litceysel.ru
добавить свой файл
1 2 3 4


А.В.Гармаш, Н.М.Сорокина


МЕТРОЛОГИЧЕСКИЕ ОСНОВЫ АНАЛИТИЧЕСКОЙ ХИМИИ

Метрологические основы аналитической химии


Любая методика химического анализа имеет своей задачей извлечение информации о веществе с использованием тех или иных средств измерений. Таким образом, аналитическая методика есть сложная, многостадийная измерительная процедура. Именно на стадии измерения (и последующей обработки и интерпретации результатов) ярко проявляется глубокое внутреннее единство самых различных аналитических методов, а закономерности измерения химических величин имеют фундаментальное значение для всех разделов аналитической химии, составляя, по существу, ее философский базис. Изучением общих вопросов, связанных с измерением, обработкой и интерпретацией результатов химического анализа занимается специальный раздел аналитической химии, называемый химической метрологией.


Химические величины, способы их выражения и измерения. Аналитический сигнал, градуировочная функция


Основной химической величиной является количество вещества (n), а основной единицей ее измерения - моль. По определению, 1 моль - это количество вещества, содержащее столько частиц, сколько атомов содержится в 0.012 кг изотопно чистого простого вещества 12C (оно равно приблизительно 6.02045.1023 штук). Таким образом, по смыслу количество вещества есть число частиц, составляющих вещество. Эту величину не следует отождествлять ни с массой, ни с объемом, ни с какими-либо иными физическими характеристиками.

Наряду с количеством вещества в химии широко используют и производные от нее величины. Важнейшая из них - концентрация (c), представляющая собой количество вещества в единице объема V:

(1)



Наиболее употребительная единица измерения концентрации - моль/л (М). В дальнейшем все химические величины - как само количество вещества, так и производные от него - мы будем обозначать собирательным термином "содержание".

Из определения понятия "количество вещества" следует, что прямые, непосредственные измерения химических величин невозможны. Действительно: непосредственно измерить количество какого-либо вещества в образце означало бы пересчитать в нем поштучно все частицы определенного сорта, что технически неосуществимо. Однако существует множество физических величин, вполне доступных прямым измерениям и функционально связанных с содержанием вещества. Например, для любого чистого вещества его масса (m) пропорциональна его количеству:


m = Mn (2)


(коэффициент пропорциональности - молярная масса M). При титровании количество определяемого вещества связано с объемом стандартного раствора титранта VТ концентрации cТ:


(3)


Для окрашенных растворов существует связь между концентрацией светопоглощающего вещества и оптической плотностью A:


A = lc (4)


(основной закон светопоглощения). И так далее. Короче, едва ли не любая механическая, оптическая или электрическая величина может при тех или иных условиях быть связанной с содержанием вещества - и, таким образом, быть использованной для его определения. В общем случае такая физическая величина называется аналитическим сигналом (y). Функциональную связь между аналитическим сигналом и содержанием (например, концентрацией) можно представить как


y = f(c) (5)

Функция f, связывающая содержание и аналитический сигнал, называется градуировочной функцией.


Общая идея измерения содержания вещества состоит в следующем.

1. Установление градуировочной функции f.

2. Измерение аналитического сигнала анализируемого образца y.

3. Нахождение по величине y с помощью функции f содержания определяемого компонента c.

Таким образом, все измерения химических величин являются косвенными, основанными на использовании градуировочной функции. Ввиду ключевой роли градуировочной функции в процессе химических измерений рассмотрим это понятие подробнее.


Абсолютные и относительные методы анализа. Градуировка. Образцы сравнения и стандартные образцы


Подчеркнем, что для осуществления химического анализа необходимо знание точного вида градуировочной функции (т.е., например, не только общей формы описывающего ее алгебраического уравнения, но и конкретных значений его параметров).

Для некоторых методов анализа точный вид градуировочной функции известен из теории. Примером таких методов служит гравиметрия, в котором аналитическим сигналом является масса, а градуировочная функция описывается уравнением (2). Его единственный параметр - молярная масса вещества M, известная с высокой точностью. Подобные методы не нуждаются в экспериментальном определении градуировочной функции и называются абсолютными. Однако абсолютных методов химического анализа существуют буквально единицы.

Гораздо более распространен случай, когда из теории известен в лучшем случае общий (и при этом зачастую приближенный) вид градуировочной функции, а ее параметры (применительно к данным конкретным условиям анализа) либо заранее неизвестны вообще, либо известны лишь ориентировочно, с точностью, не удовлетворяющей возможностям метода и требованиям к результатам анализа. В таких случаях необходимо устанавливать градуировочную функцию экспериментально, эмпирически - как правило, непосредственно перед проведением анализа, поскольку она может сильно зависеть от его условий. Такие методы называются относительными, а процедура опытного построения градуировочной функции - градуировкой. Поэтому коротко можно сказать, что абсолютные методы - это методы, не требующие градуировки, а относительные - нуждающиеся в ней. А поскольку относительных методов подавляющее большинство, то градуировка - это важнейшая составная часть практически любой аналитической методики. Как же она проводится?


Очевидно, что для осуществления градуировки необходим прежде всего набор образцов с надежно установленным содержанием определяемого компонента. В общем случае такие образцы называются образцами сравнения (ОС). Среди ОС следует особо выделить класс, называемый стандартными образцами (СО). СО - это специально приготовленный материал, состав которого надежно установлен и юридически удостоверен. Последнее означает, что каждый СО имеет официальный документ (паспорт, аттестат), выданный уполномоченным органом (системы Госстандарта, отраслевой метрологической службой и т.д.), в котором содержатся данные о его составе (как правило - содержания всех макрокомпонентов и важнейших микрокомпонентов). Во многих определенных законодательством случаях (прежде всего - при официальной аттестации новой методики) применение СО является обязательным.

Величины аналитических сигналов (и, соответственно, конкретный вид градуировочной функции) могут зависеть, и порой сильно, от условий измерения. Поэтому важнейшее требование к процессу градуировки - обеспечение максимально точного соответствия условий градуировки и последующего анализа образца. Это означает, в частности, что как градуировка, так и собственно анализ должны выполняться на одном и том же приборе, при одних и тех же значениях инструментальных параметров, а временной интервал между градуировкой и анализом должен быть как можно короче. Кроме того, если на величины аналитических сигналов влияют посторонние компоненты образца (его матрица) или его физическое состояние, то ОС, используемые для градуировки, должны быть как можно ближе к анализируемому образцу с точки зрения этих параметров. Поэтому ОС - а в особенности СО - очень часто имитируют типичные объекты анализа (существуют, например, СО почв, пищевых продуктов, природных вод, рудных концентратов и т.д.). Применяются и специальные приемы градуировки, обеспечивающие максимальную адекватность условий градуировки условиям анализа.



Способ внешних стандартов


Наиболее простой способ градуировки - способ внешних стандартов. Его часто называют также способом "обычной" градуировки либо способом "градуировочного графика" (правомерность применения последнего термина, однако, вызывает сомнения, поскольку и при других, специальных, способах градуировки градуировочную функцию также часто представляют в графическом виде). В этом способе берут ряд ОС с содержанием определяемого компонента c1, c2, ... cn, проводят с ними все необходимые согласно методике аналитические процедуры и измеряют их аналитические сигналы (y1, y2, ... yn, соответственно). По полученным парам экспериментальных значений (ci, yi) строят зависимость y от c и аппроксимируют ее подходящей алгебраической функцией либо графически (рис. 1). При этом обычно стараются выбирать такие условия анализа, чтобы эта зависимость была линейной. Затем анализируют неизвестный образец, измеряют его аналитический сигнал yx и, с использованием полученной градуировочной функции, находят (также алгебраически либо графически) соответствующее ему значение cx. Например, в случае линейной градуировочной функции, описываемой уравнением y = kc + b, неизвестное содержание можно найти как


(6)


В
Рис. 1.Градуировка и определение содержания по способу внешних стандартов

еличина b, представляющая собой значение аналитического сигнала при нулевой концентрации определяемого компонента, называется фоновым значением сигнала. Она играет важную роль при оценке чувствительности методик (с. 28).


Иногда способ внешних стандартов дополнительно упрощают, сокращая число ОС до двух (способ ограничивающих растворов) или даже одного (способ одного стандарта). В способе ограничивающих растворов линейный (в выбранном концентрационном диапазоне) характер градуировочной функции постулируют заранее (и, при возможности, экспериментально проверяют), а ОС выбирают так, чтобы c1x2. Легко видеть, что в этом случае


(7)


Если c1 и c2 достаточно близки к cx, то способ ограничивающих растворов иногда дает более точные результаты, чем "полный" вариант способа внешних стандартов.

В способе одного стандарта предполагают уже не просто линейный, но прямо пропорциональный вид градуировочной функции y = kx (без свободного члена, фоновый сигнал отсутствует). В этом случае


(8)


В любом варианте способа внешних стандартов ОС готовят и применяют отдельно от анализируемого образца (отсюда и название). Поэтому состав и свойства ОС не всегда достаточно точно соответствуют таковым для анализируемой пробы. В некоторых случаях это может привести к значительным погрешностям результатов. В подобных ситуациях следует применять специальные способы градуировки (с. 24).


Погрешности и неопределенности измерений. Точность и ее составляющие

Любой измерительный процесс подвержен действию множества факторов, искажающих результаты измерения. Отличие результата измерения от истинного значения измеряемой величины называется погрешностью. Ввиду того, что любой результат измерения, вообще говоря, содержит погрешность, точное значение измеряемой величины никогда не может быть установлено. Однако возможно указать некоторый диапазон значений, в пределах которого может, с той или иной степенью достоверности, находиться истинное значение. Этот диапазон называется неопределенностью результата измерения. Оценка неопределенности результатов химического анализа является важнейшей задачей химической метрологии.


В суммарную неопределенность результата измерения вносят вклад погрешности двух различных типов. Пусть в результате однократного измерения некоторой величины получено значение x*, отличающееся от истинного значения x0 (рис. 2, а). Повторим измерение еще несколько раз. Возможные варианты взаимного расположения серии измеренных значений и истинного значения показаны на рис. 2, б и 2, в. В первом случае (рис. 2, б) имеет место смещение всей серии данных (и ее среднего) относительно истинного значения. Соответствующая составляющая неопределенности называется систематической погрешностью. Во втором случае (рис. 2, в) наблюдается разброс данных относительно среднего значения из результатов измерения. Такая составляющая неопределенности называется случайной погрешностью. Разумеется, в реальном случае мы всегда имеем и систематическую, и случайную составляющую. Так, на рис. 2, б наряду со значительным смещением данных мы видим и некоторый их разброс, а на рис 2, в - на фоне большого разброса незначительное смещение среднего относительно истинного. Происхождение систематических и случайных погрешностей связано с различной природой факторов, воздействующих на измерительный процесс. Факторы постоянного характера или мало изменяющиеся от измерения к измерению вызывают систематические погрешности, быстро и


Рис. 2. Иллюстрация понятий систематическая и случайная погрешность. Точки и звездочки - результаты единичных измерений, вертикальные отрезки - средние значения, прочие пояснения в тексте.


зменяющиеся факторы - случайные погрешности.

С понятиями систематической и случайной погрешностей тесно связаны два важнейших метрологических понятия - правильность и воспроизводимость. Правильностью называется качество результатов измерения (или измерительной процедуры в целом), характеризующее малость систематической погрешности, воспроизводимостью - качество, характеризующее малость случайной погрешности. Иными словами, правильность результатов - это их несмещенность, а воспроизводимость - их стабильность. Обобщающее понятие, характеризующее малость любой составляющей неопределенности - как систематической, так и случайной, - называется точностью. Мы назовем результаты точными только в том случае, если для них мала как систематическая, так и случайная погрешность. Таким образом, правильность и воспроизводимость - это две составляющие точности, называемые поэтому точностными характеристиками.


В химической метрологии традиционно принято оценивать точностные характеристики по отдельности. Рассмотрим основные способы количественной оценки воспроизводимости и правильности результатов химического анализа.


Случайная погрешность: численные характеристики воспроизводимости


Поскольку воспроизводимость характеризует степень рассеяния данных относительно среднего значения, для оценки воспроизводимости необходимо предварительно вычислить среднее из серии результатов повторных (параллельных) измерений x1, x2, ... xn:


(9)


Отметим, что в обрабатываемой серии должны отсутствовать промахи - отдельные значения, резко отличающиеся от остальных и, как правило, полученные в условиях грубого нарушения измерительной процедуры (аналитической методики). Поэтому прежде всего (еще до вычисления среднего) следует с помощью специальных статистических тестов (с. 21) и, если возможно, путем детального изучения условий эксперимента проверить серию данных на наличие промахов и, при обнаружении таковых, исключить их из рассмотрения.

В качестве меры разброса данных относительно среднего чаще всего используют дисперсию


(10)


и производные от нее величины - (абсолютное) стандартное отклонение


(11)


и относительное стандартное отклонение


(12)

По смыслу дисперсия есть усредненная величина квадрата отклонения результата измерения от своего среднего значения. Несмотря на то, что числитель выражения (10) содержит n слагаемых, знаменатель равен n-1. Причина состоит в том, что среди n слагаемых числителя только n-1 независимых (поскольку по n-1 значениям xi и среднему всегда возможно вычислить недостающее n-е слагаемое). Величина знаменателя в выражении (10) обозначается f (или ) и называется числом степеней свободы дисперсии s2(x). Оно играет очень важную роль при статистической проверке различных гипотез (с. 14).


В химическом анализе для характеристики воспроизводимости обычно используют не дисперсию, а абсолютное или - чаще всего - относительное стандартное отклонение. Это объясняется соображениями практического удобства. Размерности s(x) и x совпадают, поэтому абсолютное стандартное отклонение можно непосредственно сопоставлять с результатом анализа. Величина же sr(x) - безразмерная и потому наиболее наглядная. С помощью относительных стандартных отклонений можно сравнивать между собой воспроизводимости не только конкретных данных, но и различных методик и даже методов в целом.

Среди всех существующих методов химического анализа наилучшие воспроизводимости (т.е. наименьшие sr) характерны прежде всего для "классических" химических методов анализа - титриметрии и, особенно, гравиметрии. В оптимальных условиях типичные величины sr для них составляют порядка n.10-3 (десятые доли процента). Среди инструментальных методов такой же (а в ряде методик - и более высокой) воспроизводимостью обладает кулонометрия, особенно в прямом варианте (до n.10-4). Большинство прочих инструментальных методов характеризуются величинами sr от 0.005 до 0.10. Методы с еще более низкой воспроизводимостью относятся к полуколичественным. Они часто отличаются исключительной простотой, экспрессностью, экономичностью (тест-методы) и очень полезны, например, для быстрой оценки состояния окружающей среды.

Подчеркнем, что любые величины sr, приводимые для методик (тем более методов) в целом, являются лишь ориентировочными и обычно относятся лишь к оптимальным условиям их выполнения. В иных условиях - особенно при понижении содержания определяемого компонента (с. 27) эти величины могут быть значительно (на порядок и более) выше.

Случайная погрешность: интервальная оценка



Вклад случайной погрешности в общую неопределенность результата измерения можно оценить с помощью методов теории вероятностей и математической статистики.

Ввиду наличия случайной погрешности одна и та же величина x при каждом последующем измерении приобретает новое, непрогнозируемое значение. Такие величины называются случайными. Случайными величинами являются не только отдельные результаты измерений xi, но и средние (а также дисперсии s2(x) и все производные от них величины). Поэтому может служить лишь приближенной оценкой результата измерения. В то же время, используя величины и s2(x), возможно оценить диапазон значений, в котором с заданной вероятностью P может находиться результат. Эта вероятность P называется доверительной вероятностью, а соответствующий ей интервал значений - доверительным интервалом.

Строгий расчет границ доверительного интервала случайной величины возможен лишь в предположении, что эта величина подчиняется некоторому известному закону распределения. Закон распределения случайной величины - одно из фундаментальных понятий теории вероятностей. Он характеризует относительную долю (частоту, вероятность появления) тех или иных значений случайной величины при ее многократном воспроизведении. Математическим выражением закона распределения случайной величины служит ее функция распределения (функция плотности вероятности) p(x). Например, функция распределения, изображенная на рис. 3, означает, что для соответствующей ей случайной величины x наиболее часто встречаются значения вблизи x=10, а большие и меньшие значения встречаются тем реже, чем дальше они отстоят от 10.


В качестве примера не случайно приведена колоколообразная, симметричная функция распределения. Именно такой ее вид наиболее характерен для результатов химического анализа. В большинстве случаев закон распределения результатов химического анализа можно удовлетворительно аппроксимировать так называемой функцией нормального (или гауссова) распределения:


(13)


Параметры этой функции и характеризуют: - положение максимума кривой, т.е. собственно значение результата анализа, а - ширину "колокола", т.е. воспроизводимость результатов. Можно показать, что среднее является приближенным значением , а стандартное отклонение s(x) - приближенным значением . Естественно, эти приближения тем точнее, чем больше объем экспериментальных данных, из которых они рассчитаны, т.е. чем больше число параллельных измерений n и, соответственно, число степеней свободы f.




Рис. 3. Функция нормального распределения случайной величины x с =10 и =1.



В предположении подчинения случайной величины x нормальному закону распределения ее доверительный интервал рассчитывается как


(14)

Ширина доверительного интервала нормально распределенной случайной величины пропорциональна величине ее стандартного отклонения. Численные значения коэффициентов пропорциональности t были впервые рассчитаны английским математиком В.Госсетом, подписывавшим свои труды псевдонимом Стьюдент, и потому называются коэффициентами Стьюдента. Они зависят от двух параметров: доверительной вероятности P и числа степеней свободы f, соответствующего стандартному отклонению s(x).


Причина зависимости t от P очевидна: чем выше доверительная вероятность, тем шире должен быть доверительный интервал с тем, чтобы можно было гарантировать попадание в него значения величины x. Поэтому с ростом P значения t возрастают. Зависимость t от f объясняется следующим образом. Поскольку s(x) - величина случайная, то в силу случайных причин ее значение может оказаться заниженным. В этом случае и доверительный интервал окажется более узким, и попадание в него значения величины x уже не может быть гарантировано с заданной доверительной вероятностью. Чтобы "подстраховаться" от подобных неприятностей, следует расширить доверительный интервал, увеличить значение t - тем больше, чем менее надежно известно значение s, т.е. чем меньше число его степеней свободы. Поэтому с уменьшением f величины t возрастают.

Коэффициенты Стьюдента для различных значений P и f приведены в табл. 1 (приложение). Проанализируйте ее и обратите внимание на отмеченные закономерности в изменении величин t в зависимости от P и f.

Если единичные значения x имеют нормальное распределение, то и среднее тоже имеет нормальное распределение. Поэтому формулу Стьюдента для расчета доверительного интервала можно записать и для среднего:


(15)

Величина меньше, чем s(x) (среднее точнее единичного). Можно показать (с. 27), что для серии из n значений . Поэтому доверительный интервал для величины, рассчитанной из серии n параллельных измерений, можно записать как


(16)


где f=n-1, а величины и s(x) рассчитывают по формулам (9) и (11).


следующая страница >>