litceysel.ru 1



МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РЕСПУБЛИКИ КАЗАХСТАН

Карагандинский Государственный Технический Университет

Кафедра Экономика предприятия


КОНТРОЛЬНАЯ

РАБОТА




по дисциплине «Анализ данных и прогнозирование»

Тема 15: Кластерный анализ


Выполнила студентка 3 курса

Группа Э-08 1у

Мурашова Ольга Вячеславовна

Шифр зачетной книжки: 08/12 - 035

Караганда 2011

Содержание

Введение

  1. Определение и задачи кластерного анализа

  2. Методы кластерного анализа

  3. Дендограммы

Заключение

Список литературы


Введение


Кластерный анализэто совокупность методов, позволяющих классифицировать многомерные наблюдения. Термин кластерный анализ, впервые введенный Трионом (Tryon) в 1939 году, включает в себя более 100 различных алгоритмов.

В отличие от задач классификации, кластерный анализ не требует априорных предположений о наборе данных, не накладывает ограничения на представление исследуемых объектов, позволяет анализировать показатели различных типов данных (интервальным данным, частотам, бинарным данным). При этом необходимо помнить, что переменные должны измеряться в сравнимых шкалах.

Кластерный анализ позволяет сокращать размерность данных, делать ее наглядной.

Кластерный анализ служит для выявления в данных групп точек, явственно отличающихся друг от друга. Важность решения этой задачи связана с тем, что применение стандартных средств анализа данных (в т.ч. стандартных эконометрических процедур) при наличии кластеров в данных приведет к смещению как точечных оценок (коэффициентов регрессии), так и стандартных ошибок, а значит, и к неверным статистическим выводам. Кроме того, структура данных и схожесть наблюдений могут представлять и самостоятельный интерес.


Кластерный анализ предназначен для разбиения совокупности объектов на однородные группы (кластеры или классы). По сути это задача многомерной классификации данных.



  1. Определение и задачи кластерного анализа


При анализе и прогнозировании социально-экономических явлений исследователь довольно часто сталкивается с многомерностью их описания. Это  происходит при решении задачи сегментирования рынка, построении типологии стран по достаточно большому числу показателей, прогнозирования конъюнктуры рынка отдельных товаров, изучении и прогнозировании экономической депрессии и многих других проблем.

Методы многомерного анализа - наиболее действенный количественный инструмент исследования социально-экономических процессов, описываемых большим  числом характеристик. К ним относятся кластерный анализ, таксономия, распознавание образов, факторный анализ.

Кластерный анализ наиболее ярко отражает черты многомерного анализа в классификации, факторный анализ – в исследовании связи.

Иногда подход кластерного анализа называют в литературе численной таксономией, численной классификацией, распознаванием с самообучением и т.д.

Первое применение кластерный анализ нашел в социологии. Название кластерный анализ происходит от английского слова cluster – гроздь, скопление. Впервые в 1939 был определен предмет кластерного анализа и сделано его описание исследователем Трионом. Главное назначение кластерного анализа – разбиение множества исследуемых объектов и признаков на однородные в соответствующем понимании группы или кластеры. Это означает, что решается задача классификации данных и выявления соответствующей структуры в ней. Методы кластерного анализа можно применять в самых различных случаях, даже в тех случаях, когда речь идет о простой группировке, в которой все сводится к образованию групп по количественному сходству.

Большое достоинство кластерного анализа в том, что он позволяет производить разбиение объектов не по одному параметру, а по целому набору признаков. Кроме того, кластерный анализ в отличие от большинства математико-статистических методов не накладывает никаких ограничений на вид рассматриваемых объектов, и позволяет рассматривать множество исходных данных практически произвольной природы. Это имеет большое значение, например, для прогнозирования конъюнктуры, когда показатели имеют разнообразный вид, затрудняющий применение традиционных эконометрических подходов.


Кластерный анализ позволяет рассматривать достаточно большой объем информации и резко сокращать, сжимать большие массивы социально-экономической информации, делать их  компактными и наглядными.

Важное значение кластерный анализ имеет применительно к совокупностям временных рядов, характеризующих экономическое развитие (например, общехозяйственной и товарной конъюнктуры). Здесь можно выделять периоды, когда значения соответствующих показателей были достаточно близкими, а также определять группы временных рядов, динамика которых наиболее схожа.

Кластерный анализ можно использовать циклически. В этом случае исследование производится до тех пор, пока не будут достигнуты необходимые результаты. При этом каждый цикл здесь может давать информацию, которая способна сильно изменить направленность и подходы дальнейшего применения кластерного анализа. Этот процесс можно представить системой с обратной связью.

В задачах  социально-экономического прогнозирования весьма перспективно сочетание кластерного анализа  с другими количественными методами (например, с регрессионным анализом).

Как и любой другой метод, кластерный анализ имеет определенные недостатки  и ограничения: В частности, состав  и количество кластеров зависит от  выбираемых критериев разбиения. При сведении исходного массива данных к более компактному виду могут возникать определенные искажения, а также могут теряться индивидуальные черты отдельных объектов за счет  замены их характеристиками обобщенных значений параметров кластера. При проведении классификации объектов игнорируется очень часто возможность отсутствия в рассматриваемой  совокупности каких-либо значений кластеров.

В кластерном анализе считается, что:

а) выбранные характеристики допускают в принципе желательное разбиение на кластеры;

б) единицы измерения (масштаб) выбраны правильно.

Выбор масштаба играет большую роль. Как правило, данные нормализуют вычитанием среднего и делением на стандартное отклоненение, так что дисперсия оказывается равной единице.


Задача кластерного анализа заключается в том, чтобы на основании данных, содержащихся во множестве Х, разбить множество объектов G на m (m – целое) кластеров (подмножеств) Q1, Q2, …, Qm, так, чтобы каждый объект Gj принадлежал одному и только одному подмножеству разбиения и чтобы объекты, принадлежащие одному и тому же кластеру, были сходными, в то время, как объекты, принадлежащие разным кластерам были разнородными.

Например, пусть G включает n стран, любая из которых характеризуется ВНП на душу населения (F1), числом М автомашин на 1 тысячу человек (F2), душевым потреблением электроэнергии (F3), душевым потреблением стали (F4) и т.д. Тогда Х1 (вектор измерений) представляет собой набор указанных характеристик для первой страны, Х2 - для второй, Х3 для третьей, и т.д. Задача заключается в том, чтобы разбить страны по уровню развития.

Решением задачи кластерного анализа являются разбиения, удовлетворяющие некоторому критерию оптимальности. Этот критерий может представлять собой некоторый функционал, выражающий уровни желательности различных разбиений и группировок, который называют целевой функцией. Например, в качестве целевой функции может быть взята внутригрупповая сумма квадратов отклонения:



где xj - представляет собой измерения j-го объекта.

Для решения  задачи кластерного анализа необходимо определить понятие сходства и разнородности.

Понятно то, что объекты i-ый и j-ый попадали бы в один кластер, когда расстояние (отдаленность) между точками Хi и Хj было бы достаточно маленьким и попадали бы в разные кластеры, когда это расстояние было бы достаточно большим. Таким образом, попадание в один или разные кластеры объектов определяется понятием расстояния между Хi и Хj из Ер, где Ер - р-мерное евклидово пространство. Неотрицательная функция d(Хi , Хj) называется функцией расстояния (метрикой), если:


а) d(Хi , Хj) ³ 0, для всех Хi и Хj из Ер

б) d(Хi, Хj) = 0, тогда и только тогда, когда Хi = Хj

в) d(Хi, Хj) = d(Хj, Хi)

г) d(Хi, Хj) £ d(Хi, Хk) + d(Хk, Хj), где Хj; Хi и Хk - любые три вектора из Ер.

Значение d(Хi, Хj) для Хi и Хj называется расстоянием между Хi и Хj и эквивалентно расстоянию между Gi и Gj соответственно выбранным характеристикам (F1, F2, F3, ..., Fр).

Наиболее часто употребляются следующие функции расстояний:

1. Евклидово расстояние      

d2(Хi , Хj) =

2. l1 - норма                      

d1(Хi , Хj) =

3. Сюпремум - норма     

d¥ (Хi , Хj) = sup

k = 1, 2, ..., р


  1. lp - норма                          

dр(Хi , Хj) =


Евклидова метрика является наиболее популярной. Метрика l1 наиболее легкая для вычислений. Сюпремум-норма легко считается и включает в себя процедуру упорядочения, а lp - норма охватывает функции расстояний 1, 2, 3,.

Пусть n измерений Х1, Х2,..., Хn представлены в виде матрицы данных размером p ´ n:



Тогда расстояние между парами векторов d(Хi , Хj) могут быть представлены в виде симметричной матрицы расстояний:


Понятием, противоположным расстоянию, является понятие сходства между объектами Gi. и Gj. Неотрицательная вещественная функция S(Хi ; Хj) = Sij  называется мерой сходства, если :



1) 0£ S(Хi , Хj)<1 для Хi ¹ Хj

2) S(Хi , Хi) = 1

3) S(Хi , Хj) = S(Хj , Хi)


Пары значений мер сходства можно объединить в матрицу сходства:



Величину Sij называют коэффициентом сходства.



  1. Методы кластерного анализа


Методы кластерного анализа можно разделить на две группы:

• иерархические;

• неиерархические.

Каждая из групп включает множество подходов и алгоритмов.

Используя различные методы кластерного анализа, аналитик может получить различные решения для одних и тех же данных. Это считается нормальным явлением. Рассмотрим иерархические и неиерархические методы подробно.

Суть иерархической кластеризации состоит в последовательном объединении меньших кластеров в большие или разделении больших кластеров на меньшие.

Иерархические агломеративные методы (Agglomerative Nesting, AGNES)Эта группа методов характеризуется последовательным объединением исходных элементов и соответствующим уменьшением числа кластеров.

В начале работы алгоритма все объекты являются отдельными кластерами. На первом шаге наиболее похожие объекты объединяются в кластер. На последующих шагах объединение продолжается до тех пор, пока все объекты не будут составлять один кластер. Иерархические дивизимные (делимые) методы (DIvisive ANAlysis, DIANA)Эти методы являются логической противоположностью агломеративным методам. В начале работы алгоритма все объекты принадлежат одному кластеру, который на последующих шагах делится на меньшие кластеры, в результате образуется последовательность расщепляющих групп.

Неиерархические методы выявляют более высокую устойчивость по отношению к шумам и выбросам, некорректному выбору метрики, включению незначимых переменных в набор, участвующий в кластеризации. Ценой, которую приходится платить за эти достоинства метода, является слово "априори". Аналитик должен заранее определить количество кластеров, количество итераций или правило остановки, а также некоторые другие параметры кластеризации. Это особенно сложно начинающим специалистам.


Если нет предположений относительно числа кластеров, рекомендуют использовать иерархические алгоритмы. Однако если объем выборки не позволяет это сделать, возможный путь - проведение ряда экспериментов с различным количеством кластеров, например, начать разбиение совокупности данных с двух групп и, постепенно увеличивая их количество, сравнивать результаты. За счет такого "варьирования" результатов достигается достаточно большая гибкость кластеризации.

Иерархические методы, в отличие от неиерархических, отказываются от определения числа кластеров, а строят полное дерево вложенных кластеров.

Сложности иерархических методов кластеризации: ограничение объема набора данных; выбор меры близости; негибкость полученных классификаций.

Преимущество этой группы методов в сравнении с неиерархическими методами - их наглядность и возможность получить детальное представление о структуре данных.

При использовании иерархических методов существует возможность достаточно легко идентифицировать выбросы в наборе данных и, в результате, повысить качество данных. Эта процедура лежит в основе двухшагового алгоритма кластеризации. Такой набор данных в дальнейшем может быть использован для проведения неиерархической кластеризации.

Существует еще одни аспект, о котором уже упоминалось в этой лекции. Это вопрос кластеризации всей совокупности данных или же ее выборки. Названный аспект существенен для обеих рассматриваемых групп методов, однако он более критичен для иерархических методов. Иерархические методы не могут работать с большими наборами данных, а использование некоторой выборки, т.е. части данных, могло бы позволить применять эти методы.

Результаты кластеризации могут не иметь достаточного статистического обоснования. С другой стороны, при решении задач кластеризации допустима нестатистическая интерпретация полученных результатов, а также достаточно большое разнообразие вариантов понятия кластера. Такая нестатистическая интерпретация дает возможность аналитику получить удовлетворяющие его результаты кластеризации, что при использовании других методов часто бывает затруднительным.



1) Метод полных связей.

Суть данного метода в том, что два объекта, принадлежащих одной и той же группе (кластеру), имеют коэффициент сходства, который меньше некоторого порогового значения S. В терминах евклидова расстояния d это означает, что расстояние между двумя точками (объектами) кластера не должно превышать некоторого порогового значения h. Таким образом, h определяет максимально допустимый диаметр подмножества, образующего кластер.

2) Метод максимального локального расстояния.

Каждый объект рассматривается как одноточечный кластер. Объекты группируются по следующему правилу: два кластера объединяются, если максимальное расстояние между точками одного кластера и точками другого минимально. Процедура состоит из n - 1 шагов и результатом являются разбиения, которые совпадают со всевозможными разбиениями в предыдущем методе для любых пороговых значений.

3) Метод Ворда.

В этом методе в качестве целевой функции применяют внутригрупповую сумму квадратов отклонений, которая есть ни что иное, как сумма квадратов расстояний между каждой точкой (объектом) и средней по кластеру, содержащему этот объект. На каждом шаге объединяются такие два кластера, которые приводят к минимальному увеличению целевой функции, т.е. внутригрупповой суммы квадратов. Этот метод направлен на объединение близко расположенных кластеров.

4) Центроидный метод.

Расстояние между двумя кластерами определяется как евклидово расстояние между центрами (средними) этих кластеров:

d2 ij  =  (`X –`Y)Т(`X –`Y) Кластеризация идет поэтапно на каждом из n–1 шагов объединяют два кластера G и p, имеющие минимальное значение d2ij Если n1 много больше  n2,  то центры объединения двух кластеров близки друг к другу и характеристики  второго кластера при объединении кластеров практически игнорируются. Иногда этот метод иногда называют еще методом взвешенных групп.


  1. Дендограммы



Наиболее известный метод представления матрицы расстояний или сходства основан на идее дендограммы или диаграммы дерева. Дендограмму можно определить как графическое изображение результатов процесса  последовательной кластеризации, которая осуществляется в терминах матрицы расстояний. С помощью дендограммы можно графически или геометрически изобразить процедуру кластеризации при условии, что эта процедура оперирует только  с элементами матрицы расстояний или сходства.

Существует  много способов построения дендограмм. В дендограмме объекты  располагаются вертикально слева, результаты  кластеризации – справа. Значения расстояний или сходства, отвечающие строению новых кластеров, изображаются по горизонтальной прямой поверх дендограмм.




Рис. 1


На рисунке 1 показан один из примеров  дендограммы. Рис 1 соответствует случаю шести объектов (n=6) и k характеристик (признаков). Объекты А и С наиболее близки и поэтому объединяются в один кластер на уровне близости, равном 0,9. Объекты D и Е объединяются  при уровне 0,8. Теперь имеем 4 кластера:

(А, С), (F), (D, E), (B).

Далее образуются кластеры (А, С, F) и (E, D, B), соответствующие уровню близости, равному 0,7 и 0,6. Окончательно все объекты группируются в один кластер при уровне 0,5.

Вид дендограммы зависит от выбора меры сходства  или расстояния между объектом  и кластером и метода кластеризации. Наиболее важным моментом является выбор меры сходства или меры расстояния между объектом и кластером.

Число алгоритмов кластерного анализа слишком велико. Все их можно  подразделить на иерархические  и неиерархические.

Иерархические алгоритмы связаны с построением дендограмм и делятся на:

а) агломеративные, характеризуемые последовательным объединением  исходных элементов и соответствующим уменьшением числа кластеров;


б) дивизимные (делимые), в которых число кластеров возрастает, начиная с одного, в результате чего образуется последовательность  расщепляющих групп.

Алгоритмы кластерного анализа имеют сегодня  хорошую программную реализацию, которая позволяет решить задачи самой большой размерности.


Заключение


Кластерный анализ является очень удобным средством для выделения сегментов рынка. В особенности в наш век высоких технологий, когда на помощь человеку приходят машины, и столь трудоемкий процесс становиться буквально секундным делом.

Образование сегментов зависит от имеющихся данных, а не определяется заранее.

Переменные, которые являются основанием для кластеризации, следует выбирать, исходя из опыта предшествующих исследований, теоретических предпосылок, проверяемых гипотез, а также по усмотрению исследователя. Кроме того, следует выбрать соответствующую меру расстояния (сходства). Особенность иерархической кластеризации — разработка иерархической или древовидной структуры. Иерархические методы кластеризации могут быть агломеративными или дивизивными. Агломеративные методы включают: метод одиночной связи, метод полной связи и метод средней связи. Широко распространенным дисперсионным методом является метод Барда. Неиерархические методы кластеризации часто называют методами k-средних. Эти методы включают последовательный пороговый метод, параллельный пороговый метод и оптимизирующее распределение. Иерархические и неиерархические методы можно применять совместно. Выбор метода кластеризации и выбор меры расстояния взаимосвязаны.

Решение о числе кластеров принимают по теоретическим и практическим соображениям. В иерархической кластеризации важным критерием принятия решения о числе кластеров являются расстояния, при которых происходит объединение кластеров. Относительные размеры кластеров должны быть такими, чтобы имело смысл сохранить данный кластер, а не объединить его с другими. Кластеры интерпретируют с точки зрения кластерных центроидов. Часто интерпретировать кластеры помогает их профилирование через переменные, которые не лежали в основе кластеризации. Надежность и достоверность решений кластеризации оценивают разными способами.



Список литературы


  1. Васильев В.И. и др. Статистический анализ объектов произвольной природы. Введение в статистику качества .- М.: ИКАР, 2004.

  2. Экономико-статистический анализ /Под ред. Ильенковой С.Д. –М.: ЮНТИТ, 2002.

  3. Парсаданов Г.А. Прогнозирование и планирование социально-экономической системы страны.- М.: ЮНИТИ, 2001