litceysel.ru
добавить свой файл
1
Лекция № 5. Количественные методы описания систем


Так как математических моделей сложной системы может быть сколько угодно много и все они определяются принятым уровнем абстрагирования, то рассмотрение задач на каком-либо одном уровне абстракции позволяет дать ответы на определенную группу вопросов, а для получения ответов на другие вопросы необходимо провести исследование уже на другом уровне абстракции. Каждый из возможных уровней абстрагирования обладает ограниченными, присущими только данному уровню абстрагирования возможностями. Для достижения максимально возможной полноты сведений необходимо изучить одну и ту же систему на всех целесообразных для данного случая уровнях абстракции.


  1. Уровни абстрактного описания систем

Наиболее пригодными являются следующие уровни абстрактного описания систем:


-

символический, или, иначе, лингвистический;

-

теоретико-множественный;

-

абстрактно-алгебраический;

-

топологический;

-

логико-математический;

-

теоретико-информационный;


-

динамический;

-

эвристический.

Условно первые четыре уровня относятся к высшим уровням описания систем, а последние четыре — к низшим.

Высшие уровни описания систем

Лингвистический уровень описания — наиболее высокий уровень абстрагирования. Из него как частные случаи можно получить другие уровни абстрактного описания систем более низкого ранга. Предназначен для формализации объекта, т.е. на этом уровне выбирается язык описания объекта, т.е. построить модель реального объекта для дальнейших манипуляций с ней.

Ценность лингвистического (или вербального) описания системы состоит в установлении неформализованных структурных элементов системы и связей между ними.

С помощью термов и функторов можно показать, как из лингвистического уровня абстрактного описания (уровня высшего ранга) как частный случай возникает теоретико-множественный уровень абстрагирования (уровень более низкого ранга).

Термы — некоторые множества, с помощью которых перечисляют элементы, или, иначе, подсистемы изучаемых систем, а функторы устанавливают характер отношений между введенными множествами. Множество образуется из элементов, обладающих некоторыми свойствами и находящимися в некоторых отношениях между собой и элементами других множеств. Следовательно, автоматизированные системы управления (АСУ) вполне подходят под такого рода определение понятия «множество». Это доказывает, что построение сложных систем на теоретико-множественном уровне абстракции вполне уместно и целесообразно.

Под множеством понимается любая совокупность объектов, называемых элементами множества.


На теоретико-множественном уровне абстракции можно получить только общие сведения о реальных системах, например, перечень элементов и связей между ними, а для более конкретных целей необходимы другие абстрактные модели, которые позволили бы производить более тонкий анализ различных свойств реальных систем. Эти более низкие уровни абстрагирования, в свою очередь, являются уже частными случаями по отношению к теоретико-множественному уровню формального описания систем.

Так, если связи между элементами рассматриваемых множеств устанавливаются с помощью некоторых однозначных функций, отображающих элементы множества в само исходное множество (т.е., если множество исходных элементов преобразовать согласно этим функциям, предполагается, что закономерности отношений между элементами достаточно легко проследить, мы получим искомую систему, причем этот переход однозначен), то приходим к абстрактно-алгебраическому уровню описания систем. Если же на элементах рассматриваемых множеств определены некоторые топологические структуры, то в этом случае приходим к топологическому уровню абстрактного описания систем. При этом может быть использован язык общей топологии или ее ветвей, именуемых гомологической топологией, алгебраической топологией и т. д.

Низшие уровни описания систем. Логико-математический уровень описания систем нашел широкое применение для: формализации функционирования автоматов; задания условий функционирования автоматов; изучения вычислительной способности автоматов.

Основные приложения теория автоматов имеет в практике проектирования и автоматизации проектирования дискретных устройств и, в частности, вычислительных машин. Она приобретает всё более важное значение для таких классических математических дисциплин, как теория алгоритмов, с одной стороны, и таких современных теорий в математике и кибернетике, как теория формальных систем, теория программирования, теория формальных языков и грамматик - с другой.


В узком смысле автомат употребляется для обозначения так называемых синхронных дискретных автоматов. Такие автоматы имеют конечные множества значений входных и выходных сигналов, называемых входным и выходным алфавитом. Время разбивается на промежутки одинаковой длительности (такты): на протяжении всего такта входной сигнал, состояние и выходной сигнал не изменяются. Изменения происходят только на границах тактов. Следовательно, время можно считать дискретным t=1,2, ...,n.

При любом процессе управления или регулирования, осуществляемом живым организмом или автоматически действующей машиной либо устройством, происходит переработка входной информации в выходную. Поэтому при теоретико-информационном уровне абстрактного описания систем информация выступает как свойство объектов и явлений (процессов) порождать многообразие состояний, которые посредством отражения передаются от одного объекта к другому и запечатлеваются в его структуре (возможно, в измененном виде).

Абстрагируясь от физической сущности носителей информации и рассматривая их как элементы некоторого абстрактного множества, а способ их расположения как отношение в этом множестве, приходят к абстрактному понятию кода информации как способа ее представления. Т.е. слово информации можно рассматривать как математическую модель и находить необходимые количественные характеристики и закономерности для такой достаточно эфемерной категории как информация.

Динамический уровень абстрактного описания систем связан с представлением системы как некоторого эволюционирующего объекта, куда в определенные моменты времени можно вводить вещество, энергию и информацию, а в другие моменты времени — выводить их, т. е. динамическая система наделяется свойством иметь «входы» и «выходы», причем процессы в них могут протекать как непрерывно, так и в дискретные моменты времени. Кроме этого, для динамических систем вводится понятие «состояние системы», характеризующее ее внутреннее свойство.


Эвристический (от греч. heuresko - отыскиваю, открываю) уровень абстрактного описания систем представляет собой специальные методы решения задач (эвристические методы), которые обычно противопоставляются формальным методам решения, опирающимся на точные математические модели. Использование эвристических методов (эвристик) сокращает время решения задачи по сравнению с методом полного ненаправленного перебора возможных альтернатив; получаемые решения не являются, как правило, наилучшими, а относятся лишь к множеству допустимых решений; применение эвристических методов не всегда обеспечивает достижение поставленной цели. В эвристический приемах и методах принятия решений используются интуиция и опыт специалистов в решении аналогичных проблем.

Эвристика вообще — это прием, позволяющий сокращать количество просматриваемых вариантов при поиске решения задачи. Причем этот прием не гарантирует наилучшее решение.

Например, человек, играя в шахматы, пользуется эвристическими приемами выработки решения, так как продумать весь ход игры с начала до конца практически невозможно из-за слишком большого числа вариантов игры (надо обдумать около 10120 вариантов). Если на один вариант затрачивать всего 10 с, а в году около 3*107 с, то при 8-часовой работе без выходных дней и отпуска человек способен просчитать в год не более (1/3*3*107)/10=106 вариантов. Следовательно, на перебор всех возможных вариантов шахматной партии понадобится одному человеку 10114 лет.

В последние десятилетия эвристический и лингвистический уровни описания получили широкое распространение при создании систем искусственного и гибридного интеллекта. Это объясняется тем, что они позволяют работать с неформализуемыми задачами, не решаемыми при помощи классических подходов.

Поэтому в настоящее время бурно развивается эвристическое программирование — программирование игровых ситуаций, доказательства теорем, перевода с одного языка на другой, дифференциальной диагностики, распознавания образов (звуковых, зрительных и т. д.).


Большое внимание сейчас уделяется созданию искусственного и гибридного интеллекта. При этом важное значение играют решение проблемы иерархически организованного перебора, создание и разработка методов отсечения заведомо невыгодных путей.

Таким образом, обзор уровней абстрактного описания систем показывает, что выбор подходящего метода формального описания при изучении той или иной реальной системы является всегда наиболее ответственным и трудным шагом в теоретико-системных построениях. Эта часть исследования почти не поддастся формализации и во многом зависит от эрудиции исследователя, его профессиональной принадлежности, целей исследования и т. д. Для решения проблем, связанных с информационными системами, используются все перечисленные методы, как правило, они комбинируются.


  1. Основы оценивания сложных систем

Основные типы шкал измерения

Разработка и эксплуатация информационных, телекоммуникационных, энергетических, транспортных и других сложных систем выявили проблемы, решить которые можно лишь на основе комплексной оценки различных по своей природе факторов, разнородных связей, внешних условий и т.д. В связи с этим в системном анализе выделяют раздел «теория эффективности», связанный с определением качества систем и процессов, их реализующих.

Теория эффективности - научное направление, предметом изучения которого являются вопросы количественной оценки качества характеристик и эффективности функционирования сложных систем.

В общем случае оценка сложных систем может проводиться для разных целей. Во-первых, для оптимизации - выбора наилучшего алгоритма из нескольких, реализующих один закон функционирования системы. Во-вторых, для идентификации - определения системы, качество которой наиболее соответствует реальному объекту в заданных условиях. В-третьих, для принятия решений по управлению системой. Перечень частных целей и задач, требующих оценки систем, можно продолжить. Общим во всех подобных задачах является подход, основанный на том, что понятия «оценка» и «оценивание» рассматриваются раздельно и оценивание проводится в несколько этапов. Под оценкой понимают результат, получаемый в ходе процесса, который определен как оценивание. Принято считать, что с термином «оценка» сопоставляется понятие «истинность», а с термином «оценивание» - «правильность». Другими словами, истинная оценка может быть получена только при правильном процессе оценивания. Это положение определяет место теории эффективности в задачах системного анализа.


Выделяют четыре этапа оценивания сложных систем.

Этап 1. Определение цели оценивания. В системном анализе выделяют два типа целей. Качественной называют цель, достижение которой выражается в номинальной шкале или в шкале порядка. Количественной называют цель, достижение которой выражается в количественных шкалах. Определение цели должно осуществляться относительно системы, в которой рассматриваемая система является элементом (подсистемой).

Этап 2. Измерение свойств систем, признанных существенными для целей оценивания. Для этого выбираются соответствующие шкалы измерений свойств и всем исследуемым свойствам систем присваивается определенное значение на этих шкалах.

Этап 3. Обоснование предпочтений критериев качества и критериев эффективности функционирования систем на основе измеренных на выбранных шкалах свойств.

Этап 4. Собственно оценивание. Все исследуемые системы, рассматриваемые как альтернативы, сравниваются по сформулированным критериям и в зависимости от целей оценивания ранжируются, выбираются, оптимизируются и т.д.

Понятие шкалы

В основе оценки лежит процесс сопоставления значений качественных или количественных характеристик исследуемой системы значениям соответствующих шкал. Исследование характеристик привело к выводу о том, что все возможные шкалы принадлежат к одному из нескольких типов, определяемых перечнем допустимых операций на этих шкалах.

Формально шкалой называется кортеж из трех элементов, где X - реальный объект, Y -

шкала,- гомоморфное отображение Х на Y.

В современной теории измерений определено:

эмпирическая система с отношением, включающая множество свойств, на которых в соответствии с целями измерения задано некоторое отношение . В процессе измерения необходимо каждому свойству" поставить в соответствие признак или число, его характеризующее. Если, например, целью измерения является выбор, то элементы рассматриваются как альтернативы, а отношение Rx. должно позволять сравнивать эти альтернативы;


знаковая система с отношением, являющаяся отображением эмпирической системы в виде некоторой образной или числовой системы, соответствующей измеряемой эмпирической системе;

- гомоморфное отображение X на Y, устанавливающее соответствие между X и Y так, что только тогда, когда Тип шкалы определяется по, множеству допустимых преобразований.

В соответствии с приведенными определениями, охватывающими как количественные, так и качественные шкалы, измерение эмпирической системы X с отношением Rx состоит в определении знаковой системы Y с отношением , соответствующей измеряемой системе. Предпочтения Rx на множестве в результате измерения переводятся в знаковые (в том числе и количественные)

соотношения Ry на множестве

Шкалы номинального типа

Самой слабой качественной шкалой является номинальная (шкала наименований, классификационная шкала), по которой объектам х или их неразличимым группам дается некоторые признак. Основным свойством этих шкал является сохранение неизменными отношений равенства между элементами эмпирической системы в эквивалентных шкалах.


Шкалы номинального типа задаются множеством взаимно однозначных допустимых преобразований шкальных значений. Название «номинальный» объясняется тем, что такой признак дает лишь ничем не связанные имена объектам. Эти значения для разных объектов либо совпадают, либо различаются; никакие более тонкие соотношения между значениями не зафиксированы. Шкалы номинального типа допускают только различение объектов на основе проверки выполнения отношения равенства на множестве этих элементов.

Номинальный тип шкал соответствует простейшему виду измерений, при котором шкальные значения используются лишь как имена объектов, поэтому шкалы номинального типа часто называют также шкалами наименований.

Примерами измерений в номинальном типе шкал могут служить номера автомашин, телефонов, коды городов, лиц, объектов и)т. п. Единственная цель таких измерений выявление различий между объектами разных классов. Если каждый класс состоит из одного объекта, шкала наименований используется для различения объектов.

Шкалы порядка

Шкала называется ранговой (шкала порядка), если множество Ф состоит из всех монотонно возрастающих допустимых преобразований шкальных значений.

Монотонно возрастающим называется такое преобразование, которое удовлетворяет условию: еслито идля любых шкальных значенийиз области определения .

Порядковый тип шкал допускает не только различие объектов, как номинальный тип, но и используется для упорядочения объектов по измеряемым свойствам. Измерение в шкале порядка может применяться, например, в следующих ситуациях:


Необходимо упорядочить объекты во времени или пространстве. Это ситуация, когда интересуются не сравнением степени выраженности какого-либо их качества, а лишь взаимным пространственным или временным расположением этих объектов.

Примерами шкал порядка могут служить шкалы силы ветра, силы землетрясения, сортности товаров в торговле, различные социологические шкалы и т.п.

Любая шкала, полученная из шкалы порядка S с помощью произвольного монотонно возрастающего преобразования шкальных значений, будет также точной шкалой порядка для исходной эмпирической системы с отношениями.

Шкалы интервалов

Одним из наиболее важных типов шкал является тип интервалов. Тип шкал интервалов содержит шкалы, единственные с точностью до множества положительных линейных допустимых преобразований вида где xэY - шкальные значения из области определения Y; , b -

любое значение.

Основным свойством этих шкал является сохранение неизменными отношений интервалов в эквивалентных шкалах:



Отсюда и происходит название данного типа шкал. Примером шкал интервалов могут служить шкалы температур. Переход от одной шкалы к эквивалентной, например, от шкалы Цельсия к шкале Фаренгейта, задается линейным преобразованием шкальных значений:

Таким образом, при переходе к эквивалентным шкалам с помощью линейных преобразований в шкалах интервалов происходит изменение как начала отсчета (параметр b), так и масштаба измерений (параметр а).

Шкалы интервалов так же, как номинальная и порядковая, сохраняют различие и упорядочение измеряемых объектов. Однако кроме этого они сохраняют и отношение расстояний между парами объектов.


Шкалы отношений

Шкалой отношений (подобия) называется шкала, если φ состоит из преобразований подобия φ (х)=ax,

a>0, где х принадлежит;

а - действительные числа.

Нетрудно убедиться, что в шкалах отношений остаются неизменными отношения численных оценок объектов. Действительно, пусть в одной шкале объектам a1 и a2 соответствуют шкальные значения x1 и х2, а в другой- произвольное действительное число. Тогда имеем:



Данное соотношение объясняет название шкал отношений. Примерами измерений в шкалах отношений являются измерения массы и длины объектов. Известно, что при установлении массы используется большое разнообразие численных оценок. Так, производя измерение в килограммах, получаем одно численное значение, при измерении в фунтах - другое и т.д. Однако можно заметить, что в какой бы системе единиц ни производилось измерение массы, отношение масс любых объектов одинаково и при переходе от одной числовой системы к другой, эквивалентной, не меняется. Этим же свойством обладает и измерение расстоя­ний и длин предметов.

В шкале отношений фиксируется нулевая точка начала отсчета шкальных значений для всех шкал отношений. Переход от одной шкалы отношений к другой, эквивалентной ей шкале, осуществляется с помощью преобразований подобия (растяжения), т.е. изменением масштаба измерений. Шкалы отношений, являясь частным случаем шкал интервалов, при выборе нулевой точки отсчета сохраняют не только отношения свойств объектов, но и отношения расстояний между парами объектов.

Шкалы разностей

Шкалы разностей определяются как шкалы, единственные с точностью до преобразований сдвига φ (х)=x+b, где х - шкальные значения из области определения; b - действительные числа. Это означает, что при переходе от одной числовой системы к другой меняется лишь начало отсчета.


Шкалы разностей применяются в тех случаях, когда необходимо измерить, насколько один объект превосходит по определенному свойству другой объект. В шкалах разностей неизменными остаются разности численных оценок свойств. Действительно, если x1 и х2 - оценки объектов a1 и а2 в одной шкале, а φ(х1)=x1+b и φ(х2)=x2+b - в другой шкале, то имеем:




Примером измерения в шкале разностей является летоисчисление (в годах). Переход от одного летоисчисления к другому осуществляется изменением начала отсчета.

Как и шкалы отношений, шкалы разностей являются частным случаем шкал интервалов, получаемых фиксированием параметра a: (a=1), т.е. выбором единицы масштаба измерений. Точка отсчета в шкалах разностей может быть произвольной.

Шкалы разностей, как и шкалы интервалов, сохраняют отношения интервалов между оценками парами объектов, но, в отличие от шкалы отношений, не сохраняют отношения оценок свойств объектов.

Абсолютные шкалы

Абсолютными называют шкалы, в которых единственными допустимыми преобразованиями Ф являются тождественные преобразования.

Это означает, что существует только одно отображение эмпирических объектов в числовую систему. Отсюда и название шкалы, так как для нее единственность измерения понимается в буквальном абсолютном смысле.

Абсолютные шкалы применяются, например, для измерения количества объектов, предметов, событий, решений и т.п. В качестве шкальных значений при измерении количества объектов используются натуральные числа, когда объекты представлены целыми единицами, и действительные числа, если кроме целых единиц присутствуют и части объектов.

Абсолютные шкалы являются частным случаем всех ранее рассмотренных типов шкал, поэтому сохраняют любые соотношения между числами оценками измеряемых свойств объектов; различие, порядок, отношение интервалов, отношение и разность значений и т.д.


Не останавливаясь подробно на промежуточных вариантах, изобразим для наглядности соотношения между основными типами шкал в виде иерархической структуры основных шкал (рис. 4.1). Здесь стрелки указывают включение совокупностей допустимых преобразований более «сильных» в менее «сильные» типы шкал. При этом шкала тем «сильнее», чем меньше свободы в выборе φ (х).

Некоторые шкалы являются изоморфными, т.е. равносильными. Например, равносильны шкала интервалов и степенная шкала. Логарифмическая шкала равносильна шкале разностей к шкале отношений.


Рис.4.1 Иерархия шкал измерений