litceysel.ru
добавить свой файл
1




Лекция 12. Элементы квантовой механики

12.1. Соотношение неопределенностей

Современная трактовка корпускулярно-волнового дуализма может быть выражена словами: для атомного объекта существует потенциальная возможность проявлять себя, в зависимости от внешних условий, либо как волна, либо как частица, либо промежуточным образом. Именно в этой потенциальной возможности различных проявлений свойств, присущих микрообъекту, и состоит дуализм волна - частица.

Существует критерий, показывающий в каких случаях можно ограничиться классическими представлениями. Этот критерий связан с постоянной Планка ħ. Анализ причин существования этого предела, который называют принципом неопределенности, провел В. Гейзенберг (1927). Количественные соотношения, выражающие этот принцип в конкретных случаях, называют соотношениями неопределенностей. Наиболее важными являются два соотношения.

Первое из них ограничивает точности одновременного измерения координаты (х, у, z) и соответствующих проекций импульса частицы (px, py, pz), причем неопределенности этих величин удовлетворяют условию:

xpx ≥ ћ

ypy ≥ ћ

zpz ≥ ћ

(12.1)

(В точных соотношениях слева под x и px и других координат и импульсов должны пониматься среднеквадратичные отклонения от средних величин, а справа - ћ/2. Так как для принципиальных вопросов важно знать лишь порядок величины, то можно не пользоваться точными соотношениями.)


Второе соотношение устанавливает неопределенность измерения энергии, E, за данный промежуток времени t:

E·∆t ≥ ћ

(12.2)

Первое из этих двух соотношений утверждает, что если положение частицы, например, по оси X изве­стно с неопределенностью x, то в тот же момент проекцию импульса частицы на эту же ось можно измерить только с неопределенностью px ћ/(∆x). Заметим, что эти ограничения не касаются одновременного измерения координаты частицы по одной оси и проекции импульса — по другой: величины х и ру, у и рг и т. д. могут иметь одновременно точные значения. Таким образом, для микрочастицы не существует состояний, в которых ее проекция импульса и координата на этой же оси проекций имели бы одновременно точные значения. Не возможно одновременно точно определить координату и соответствующую ей проекцию импульса. Это ограничение не связано с несовершенством методов измерения или измерительных приборов, а является следствием специфики микрообъектов, а именно их двойственной корпускулярно-волновой природы

Соотношения неопределенностей связывают между собой пары динамических переменных. В классической механике такие пары величин называются канонически сопряженными.

Утверждение о том, что произведение неопределенностей значений двух сопряженных переменных не может быть по порядку величины меньше постоянной Планка ћ, называется принципом неопределенности Гейзенберга.

Энергия и время являются канонически сопряженными величинами. Согласно второму соотношению (12.2) для измерения энер­гии с погрешностью E необходимо время, не меньшее, чем t ћ/(E). То есть из-за конечности времени жизни атомов в возбужденном состоянии энергия возбужденных состояний атомов не является точно определенной, а потому соответствующий энергетический уровень характеризуется конечной шириной.


Соотношение неопределенностей указывает, в какой мере можно пользоваться понятиями классической механики применительно к микрочастицам, то есть является квантовым ограничением применимости классической механики к микрообъектам.

Соотношение неопределенностей (12.1) является одним из фундаментальных положений квантовой теории. Одного этого соотношения достаточно, чтобы получить ряд важных результатов, в частности:

Соотношение неопределенностей позволяет объяснить тот факт, что электрон не падает на ядро атома, а также оценить размеры простейшего атома и минимальную возможную энергию электрона в таком атоме.

Пусть частица «заперта» в одномерной области размером l. При нахождении возможного значения минимальной энергии Eмин частицы мы обычно считаем, что импульс частицы по порядку величины равен его неопределенности, т. е. р