litceysel.ru
добавить свой файл
1
МОСКОВСКАЯ ФИНАНСОВО-ЮРИДИЧЕСКАЯ АКАДЕМИЯ




Согласовано на 2008-2009 уч.год

Начальник УМУ




__________________С.В. Щедроткина


«_____»_______________2009 г.






Дисциплины: Математическая экономика.

Специальности (направления): все

Форма обучения: все


Программа для подготовки к экзамену


ТЕОРЕТИЧЕСКАЯ ЧАСТЬ

Список тем


  1. Линейные экономические модели.

  2. Модель Леонтьева многоотраслевой экономики.

  3. Продуктивная модель Леонтьева.

  4. Общая задача исследования операций.

  5. Общая задача линейного программирования.

  6. Примеры задач линейного программирования.

  7. Каноническая формулировка задачи линейного программирования.

  8. Графический метод решения задачи линейного программирования.

  9. Симплекс-метод и его алгоритм.

  10. Метод искусственных переменных.

  11. Двойственная задача линейного программирования.

  12. Транспортная задача. Поиск первоначального решения.

  13. Транспортная задача. Метод потенциалов.

  14. Транспортная задача. Построение циклов.

  15. Общая задача целочисленного программирования.

  16. Метод Гомори решения задачи целочисленного программирования.

  17. Общая постановка задачи динамического программирования..

  18. Принцип оптимальности и уравнения Беллмана.
  19. Глобальный и условный экстремумы.


  20. Метод множителей Лагранжа для нахождения условного экстремума.

  21. Выпуклые множества и выпуклые функции.

  22. Выпуклое программирование.

  23. Градиентные методы решения задач нелинейного программирования.

  24. Виды игр. Основные понятия и определения

  25. Платежная матрица. Верхняя и нижняя цена игры.

  26. Принцип минимакса.

  27. Решение игр в смешанных стратегиях.

  28. Сетевая модель и ее основные элементы.

  29. Построение сетевых графиков.

  30. Анализ сетевых моделей.

ПРАКТИЧЕСКАЯ ЧАСТЬ


Типовые задачи.

  1. Модель Леонтьева.

Найти валовой продукт (при расчетах необходимо найти матрицу прямых и матрицу полных затрат).

1.

Отрасли

Прямые межотраслевые потоки

Конечный продукт

Валовой продукт

1

2

3

4

1

30

30

50

35

60




2

25

50


40

42

25




3

30

40

35

50

35




4

30

50

50

35

40





2.

Отрасли

Прямые межотраслевые потоки

Конечный продукт

Валовой продукт

1

2

3

4

1

30

30

50

35

60




2

25

60

40


42

25




3

25

40

40

50

35




4

30

50

50

35

40




3.

. Убедиться, что модель Леонтьева продуктивна. Найти вектор конечного продукта для нового вектора валового выпуска X = . Найти вектор валового выпуска для нового вектора конечного продукта Y = .














d

e

f

g

Значения

600

300

20

80

70

100

700

400

600

900


2. Общая задача линейного программирования.

Запишите экономико-математическую модель для следующих задач:

1.Известно, что содержание трех питательных веществ А. В и С в рационе должно быть не менее 80, 60 и 30 единиц соответственно. Указанные питательные вещества содержат три вида продуктов. Содержание единиц питательных веществ в одном килограмме продуктов приведено в таблице

Питательные вещества

Количество единиц питательных веществ

I

II

III

А

1

4

3


В

2

4

2

С

2

1

3

Цена за 1 кг продукта

10

12

8

Определите дневной рацион, обеспечивающий получение необходимого количества питательных веществ.


2.Торговое предприятие реализует 4 группы товаров (А, В, С и D). Нормы затрат ресурсов на каждый тип товаров, лимиты ресурсов, а также доход на единицу каждой продукции заданы в таблице. Определить плановый объем продаж так, чтобы доход торгового предприятия был максимален.

Виды ресурсов

Норма затрат ресурсов на 1 ед. товара

Лимит ресурсов

А

В

С

D

I

0,2

1,2

3

0,8

1400

II

0,5

0,2


0,1

0,05

200

III

3

0,5

1

2

1000

IV

5

7

4

8

800

Доход не ед. продукции, руб.

4

5

3

4





3. Графический метод.

Решить задачи графическим методом.

1.


2.


4. Симплекс-метод.

Решить задачи симплекс-методом.

  1. Сформулируйте вариант приготовления бензина АИ-93 и АИ-95, который обеспечивает максимальный доход оп продажи, если имеется 9 т смеси 1-го сорта и 32 т 2-го сорта. На изготовление АИ-93 идет 60% смеси 1-го сорта и 40% смеси 2-го сорта, на изготовление АИ-95 идет 80% смеси 1-го сорта и 20% смеси 2-го сорта. Реализуется 1 т бензина АИ-93 за 82000 рублей, а 1 т АИ-95 – за 11000 рублей.
  2. Хлебозавод производит 2 типа торта «БИС» и «КВИТ». Для производства 1 т «БИС» требуется 0,3 ч работы оборудования, а для «КВИТ» - 0,5 ч. Расход специального ингредиента на них составляет 0,4 и 0,1 т на т соответственно. Ежедневно в распоряжении завода 12 т ингредиента и 15 ч работы оборудования. Доход от продажи торта «БИС» составляет 20000 руб., а «КВИТ» - 31000 руб. Определить ежедневный план производства тортов каждого вида, обеспечивающий максимальный доход от продаж.





  1. Метод искусственных переменных.

Решить задачи симплекс-методом, используя метод искусственных переменных.

1.


2.


6. Двойственная задача симплекс-метода.

Составить задачи двойственные данным и найти их решения, используя теорему двойственности.

1.


2.


7. Транспортная задача.


1. В пунктах А и В находятся соответственно 110 и 190 т горючего. Пунктам 1, 2 и 3 требуется соответственно 70, 90 и 140 т горючего. Стоимость перевозки 1 т горючего из пункта А в пункты 1, 2, 3 равна 200, 300 и 400 руб., а из пункта В в пункты 1, 2, 3 – 600, 200 и 500 руб. за 1 т соответственно. Составить план перевозок горючего, минимизирующий общую сумму транспортных расходов.


8. Целочисленное программирование.

Найти решение следующих задач целочисленного программирования.


1.


2.

9. Теория игр.

Определить верхнюю и нижнюю цену игры и, если возможно, седловую точку.


1.

2

4

1

5


1

-1

3

2

5

2

-4

0

-2

5

-3

-4


2.

2

3

-1

4

3

2

4

1

-4

3

-1

-2

-5

5

-3

-4


10. Нелинейное программирование.

Определить методом множителей Лагранжа экстремум функции.

1. при ;

2. при



11. Динамическое программирование.

1.Имеется 4 предприятия, между которыми необходимо распределить 100 тыс. усл. ед. средств. Значение прироста выпуска продукции на предприятии в зависимости от выделенных средств Х представлена в таблице. Составить оптимальный план распределения средств, позволяющий максимизировать прирост выпуска продукции.


Х

f1(x)

f2(x)

f3(x)

f4(x)

20

16

14

15

15

40

30

32

36

25

60

49

50

45

22

80

51

48

57

36

100

72

60

70

51

ТИПОВЫЕ БИЛЕТЫ


Типовой билет 1.




Решить задачу графически:






Предприятие производит металлорежущие станки двумя технологическими способами, причем издержки производства при первом способе изготовления х1 тонн продукции равны 2+х1+2х12 руб., а при втором способе изготовления х2 тонн продукции равны 2+3х2+2х22 руб. Составить план производства, при котором будет произведено 1 тонна продукции при минимальных издержках (решить методом Лагранжа).



Для строительства 3-х участков дорожной магистрали необходимо завозить песок. Песок может быть поставлен из 4-х карьеров. Перевозка песка из карьеров до участков осуществляется грузовиками одинаковой грузоподъемности. Расстояние в км от карьеров до участков, наличие песка в карьерах и потребность песка на участках дороги приведены в таблице:

Песчаные карьеры

Участки дороги

Наличие песка, тыс. т


I

II

III

IV

I

1

8

2

3

30

II

4

7

5

1

50

III

5

3

4

4

20

Потребность в песке, тыс. т

15

15

40

30




Составьте план перевозок минимизирующий общий пробег грузовиков.


Типовой билет 2.


1.

Решить задачу графически:





2.

Определить верхнюю и нижнюю цену игры и, если возможно, то и седловую точку:

2

5

4

12

6

6

11

9

8

7

3

3

2

0

1




3.

Убедиться, что модель Леонтьева продуктивна. Найти вектор конечного продукта для нового вектора валового выпуска X = . Найти вектор валового выпуска для нового вектора конечного продукта Y = .
















Значения

500

700

50

100

60

90





Типовой билет 3.


1

Решить задачу графически:




2

Предприятие производит металлорежущие станки двумя технологическими способами, причем издержки производства при первом способе изготовления х1 тонн продукции равны 1+4х1+3х12 руб., а при втором способе изготовления х2 тонн продукции равны 3+1х2+2х22 руб. Составить план производства, при котором будет произведено 1 тонна продукции при минимальных издержках (решить методом Лагранжа).


3

Решить задачу симплекс-методом:




Типовой билет 4.


1

Решить задачу графически:




2

Составить экономико-математическую модель:

Торговое предприятие реализует 4 группы товаров (А, В, С и D). Нормы затрат ресурсов на каждый тип товаров, лимиты ресурсов, а также доход на единицу каждой продукции заданы в таблице. Определить плановый объем продаж так, чтобы доход торгового предприятия был максимален.

Виды ресурсов

Норма затрат ресурсов на 1 ед. товара

Лимит ресурсов

А

В

С

D

I

0,2

1,2

3


0,8

1400

II

0,5

0,2

0,1

0,05

200

III

3

0,5

1

2

1000

IV

5

7

4

8

800

Доход не ед. продукции, руб.

4

5

3

4







3

В пунктах А и В находятся соответственно 110 и 190 т горючего. Пунктам 1, 2 и 3 требуется соответственно 70, 90 и 140 т горючего. Стоимость перевозки 1 т горючего из пункта А в пункты 1, 2, 3 равна 200, 300 и 400 руб., а из пункта В в пункты 1, 2, 3 – 600, 200 и 500 руб. за 1 т соответственно. Составить план перевозок горючего, минимизирующий общую сумму транспортных расходов.




УЧЕБНО-МЕТОДИЧЕСКОЕ ОБЕСПЕЧЕНИЕ ДИСЦИПЛИНЫ.



Базовые учебные пособия.

  1. Буланова А.Н. Учебное пособие по дисциплине математические методы в экономике – М. МФЮА, 2004.

  2. Просветов Г.И. Математические модели в экономике: Учебно-методическое пособие. - М.: Издательство РДЛ, 2005.

  3. Просветов Г.И. Математические модели в экономике: Учебно-методическое пособие. 2-е изд. - М.: Издательство РДЛ, 2005.