litceysel.ru
добавить свой файл
  1 2 3 4

Тема 4. Молекулярная биофизика

Пространственная организация биополимеров. Макромолекула как основа организации биоструктур. Пространственная конфигурация биополимеров. Статистический характер конформации биополимеров.

Условия стабильности конфигурации макромолекул. Фазовые переходы. Переходы глобула-клубок. Кооперативные свойства макромолекул. Типы объемных взаимодействий в белковых макромолекулах. Водородные связи: силы Ван-дер-Ваальса; электростатические взаимодействия; поворотная изомерия и энергия внутреннего вращения. Расчет общей конформации энергии биополимеров. Взаимодействие макромолекул с растворителем. Состояние воды и гидрофобные взаимодействия в биоструктурах. Переходы спираль-клубок.

Особенности пространственной организации белков и нуклеиновых кислот. Модели фибриллярных и глобулярных белков. Количественная структурная теория белка. Динамические свойства глобулярных белков. Структурные и энергетические факторы, определяющие динамическую подвижность белков. Гиперповерхности уровней конфирмационной энергии. Динамическая структура олигопептидов и глобулярных белков; конфирмационная подвижность. Методы изучения конфирмационной подвижности: изотопный обмен, люминесцентные методы, ЭПР, гамма-резонансная спектроскопия, ЯМР высокого разрешения, импульсные методы ЯМР, методы молекулярной динамики. Карты уровней свободной энергии пептидов.

Связь характеристик конформационной подвижности белков с их функциональными свойствами. Динамика электронно-конформационных переходов. Роль воды в динамике белков. Роль конформационной подвижности в функционировании ферментов и транспортных белков.

Электронные свойства биополимеров. Электронные уровни в биопомерах. Основные типы молекулярных орбиталей и электронных состояний. Схема Яблонского для сложных молекул. Принцип Франка - Кондона и законы флуоресценции. Люминесценция биологически важных молекул. Механизмы миграции энергии: резонансный механизм, синглет-синглетный и триплет-триплетный переносы, миграция экситона. Природа гиперхромного и гипохромного эффектов.

Возбужденные состояния и трансформация энергии в биоструктурах. Перенос электрона в биоструктурах. Различные физические модели переноса электрона. Туннельный эффект. Туннелирование с участием виртуальных уровней. Электронно-конформационные взаимодействия и релаксационные процессы в биоструктурах.


Современные представления о механизмах ферментативного катализа. Электронно-конформационные взаимодействия в фермент-субстратном комплексе. Формула для константы скорости образования многоцентровой активной конфигурации.

Тема 5. Биофизика мембран

Структура и функционирование биологических мембран. Мембрана как универсальный компонент биологических систем. Развитие представлений о структурной организации мембран. Характеристика мембранных белков и липидов. Динамика структурных элементов мембраны. Белок-липидные взаимодействия. Вода как составной элемент биомембран. Модельные мембранные системы. Монослой на границе раздела фаз. Бислойные мембраны. Протеолипосомы.


Физико-химические механизмы стабилизации мембран. Особенности фазовых переходов в мембранных системах. Вращательная и трансляционная подвижность фосфолипидов, флип-флоп переходы. Подвижность мембранных белков. Влияние внешних (экологических) факторов на структурно-функциональные характеристики биомембран.

Поверхностный заряд мембранных систем; происхождение электрокинетического потенциала. Явление поляризации в мембранах. Дисперсия электропроводности, емкости, диэлектрической проницаемости. Зависимость диэлектрических потерь от частоты.

Свободные радикалы при цепных реакциях окисления липидов в мембранах и других клеточных структурах. Образование свободных радикалов в тканях в норме и при патологических процессах. Роль активных форм кислорода. Антиоксиданты, механизм их биологического действия. Естественные антиоксиданты тканей и их биологическая роль.

Транспорт веществ через биомембраны и биоэлектрогенез. Пассивный и активный транспорт веществ через биомембраны. Транспорт неэлектролитов. Проницаемость мембран для воды. Простая диффузия. Ограниченная диффузия. Связь проницаемости мембран с растворимостью проникающих веществ в липидах. Облегченная диффузия. Транспорт сахаров и аминокислот через мембраны с участием переносчиков. Пиноцитоз.

Транспорт электролитов. Электрохимический потенциал. Ионное равновесие на границе мембрана - раствор. Профили потенциала и концентрации ионов в двойном электрическом слое. Пассивный транспорт; движущие силы переноса ионов. Электродиффузионное уравнение Нернста-Планка. Уравнения постоянного поля для потенциала и ионного тока. Проницаемость и проводимость. Соотношение односторонних потоков (соотношение Уссинга).

Потенциал покоя, его происхождение. Активный транспорт. Электрогенный транспорт ионов. Участие АТФаз в активном транспорте ионов через биологические мембраны. Ионные каналы, теория однорядного транспорта. Ионофоры: переносчики и каналообразующие агенты. Ионная селективность мембран (термодинамический и кинетический подходы). Потенциал действия. Роль ионов Na+ и K+ в генерации потенциала действия в нервных и мышечных волокнах; роль ионов Ca2+ и Cl- генерации потенциала действия у других объектов. Механизмы активации и инактивации каналов.

Математическая модель нелинейных процессов мембранного транспорта. Флуктуации напряжения и проводимости в модельных и биологических мембранах.

Распространение возбуждения. Кабельные свойства нервных волокон. Математические модели процесса распространения нервного импульса. Физико-химические процессы в нервных волокнах при проведении рядов импульсов (ритмическое возбуждение). Энергообеспечение процессов распространения возбуждения. Основные понятия теории возбудимых сред.

Молекулярные механизмы процессов энергетического сопряжения. Связь транспорта ионов и процесса переноса электрона в хлоропластах и митохондриях. Локализация электротранспортных цепей в мембране. Структурные аспекты функционирования связанных с мембраной переносчиков. Асимметрия мембраны. Основные положения теории Митчелла. Электрохимический градиент протонов. энергизированное состояние мембран; роль векторной Н+-АТФазы. Сопрягающие комплексы, их локализация в мембране. Функции отдельных субъединиц. Конформационные перестройки в процессе образования макроэрга. Бактериородопсин как молекулярный фотоэлектрический генератор. Физические аспекты и модели энергетического сопряжения.

Тема 6. Биофизика рецепции

Гормональная рецепция. Общие закономерности взаимодействия лигандов в рецепторами. Роль структуры плазматической мембраны в процессе передачи гормонального сигнала. Рецептор-опосредованный внутриклеточный транспорт. Представления о цитоплазменно-ядерном транспорте. Методы исследования гормональных рецепторов.

Сенсорная рецепция. Проблема сопряжения между первичным взаимодействием внешнего стимула с рецепторным субстратом и генерацией рецепторного (генераторного) потенциала. Общие представления о структуре и функции рецепторных клеток. Место рецепторных процессов в работе сенсорных систем.

Фоторецепция. Строение зрительной клетки. Молекулярная организация фоторецепторной мембраны; динамика молекулы зрительного пигмента в мембране. Зрительные пигменты: классификация, строение, спектральные характеристики; фотохимические превращения родопсина. Ранние и поздние рецепторные потенциалы. Механизмы генерации позднего рецепторного потенциала.

Механорецепция. Рецепторные окончания кожи, проприорецепторы. Механорецепторы органов чувств: органы боковой линии, вестибулярный аппарат, кортиев орган внутреннего уха. Общие представления о работе органа слуха. Современные представления о механизмах механорецепции; генераторный потенциал. Электрорецепция.

Хеморецепция. Обоняние. Восприятие запахов: пороги, классификация запахов. Вкус. Вкусовые качества. Строение вкусовых клеток. Проблема вкусовых рецепторных белков. Рецепция медиаторов и гормонов. Проблема клеточного узнавания. Механизмы взаимодействия клеточных поверхностей.



<< предыдущая страница   следующая страница >>