litceysel.ru
добавить свой файл
1
.



Материалы для проекта «История теоремы Пифагора»


ВВЕДЕНИЕ:
На протяжении многих лет людей интересовал вопрос о теореме Пифагора и о различных способах её доказательства. Причина такой популярности теоремы: это простота , красота и широкая значимость. В современных школьных учебниках рассматриваются традиционные доказательства теоремы Пифагора. Это - алгебраическое доказательство, основанное на площади (применяется в учебнике «Геометрия 7-9»,Л. С. Атанасян), доказательство Евклида (рассматривается в учебнике «Геометрия: Учебник для 6-9 классов средней школы»,А.П.КиселёвПостепенно, появлялись новые способы доказа-тельства теоремы…
ЦЕЛЬЮ ДАННОГО РЕФЕРАТА является:
• Рассмотреть классические и малоизвестные доказательства теоремы, такие как доказательства Гарфилда, Хоукинса, Бхаскари-Ачарна, векторное доказательство теоремы и т.д.
• Познакомиться с историей открытия теоремы
• Изучить области применения теоремы
• Сделать выводы о значении теоремы Пифагора
При работе с рефератом были использованы различные источники:
1. Учебно-методическая газета Математика, автор: Г.Остренкова,
где рассматриваются сведения о жизни Пифагора, а также материал о Пифагоровых трой-ках.
2. Книга М.В.Ткачевой Домашняя математика , из которой взято замечательное стихотво-рение, связанное с теоремой Пифагора
3. Интернет- ресурсы, в частности следующие сайты:
http://bankreferatov.ru/ (с данного сайта использована основная информация о значении теоремы Пифагора), http://kvant.ru/ (здесь представлена статья об истории открытия теоре-мы Пифагора) , http://th-pif.narod.ru/formul.html (на данном сайте содержится информация о способах доказательства теоремы).
2. ИСТОРИЯ ОТКРЫТИЯ ТЕОРЕМЫ ПИФАГОРА:

Долгое время считали, что до Пифагора эта теорема не была известна. В настоящее вре-мя установлено, что эта величайшая теорема встречается в вавилонских текстах, написанных за 1200 лет до Пифагора. Открытие теоремы Пифагором окружено ореолом красивых легенд. Прокл, комментируя последнее предложение первой книги «Начал» Евклида, пишет: «Если послушать тех, кто любит повторять древние легенды, то придется сказать, что эта теорема восходит к Пифагору; рассказывают, что он в честь этого открытия принес в жертву быка». Впрочем, более щедрые сказители одного быка превратили в одну гекатомбу, а это уже целая сотня. И хотя еще Цицерон заметил, что всякое пролитие крови было чуждо уставу пифагорейского ордена, легенда эта прочно срослась с теоремой Пифагора и через две тысячи лет продолжала вызывать горячие отклики. Так, оптимист Михаил Ломоносов (1711--1765) писал: «Пифагор за изобретение одного геометрического правила Зевсу принес на жертву сто волов. Но ежели бы за найденные в нынешние времена от остроумных математиков правила по суеверной его ревности поступать, то едва бы в целом свете столько рогатого скота сыскалось». А вот ироничный Генрих Гейне (1797—1856) видел развитие той же ситуации несколько иначе: «Кто знает! Кто знает! Возможно, душа Пифагора переселилась в беднягу кандидата, который не смог доказать теорему Пифагора и провалился из-за этого на экзаменах, тогда как в его экзаменаторах обитают души тех быков, которых Пифагор, обрадованный открытием своей теоремы, принес в жертву бессмертным богам». Сегодня теорема Пифагора обнаружена в различных частных задачах и чертежах: и в египетском треугольнике в папирусе времен фараона Аменемхета первого (ок. 2000 до н.э.), и в вавилонских клинописных табличках эпохи царя Хаммурапи (XVIII в. до н.э.), и в древнеиндийском геометрическо-теологическом трактате VII —V вв. до н.э. «Сульва сутра» («Правила веревки»). В древнейшем китайском трактате «Чжоу-би суань цзинь», время создания которого точно не известно, утверждается, что в XII в. до н. э. китайцы знали свойства египетского треугольника, а к VI в. до н.э.—и общий вид теоремы. Несмотря на все это, имя Пифагора столь прочно сплавилось с теоремой Пифагора, что сейчас просто не-возможно представить, что это словосочетание распадется. То же относится и к легенде о заклании быков Пифагором. Да и вряд ли нужно препарировать историко-математическим скальпелем красивые древние предания. Сегодня принято считать, что Пифагор дал первое доказательство носящей его имя теоремы. Увы, от этого доказательства также не сохранилось никаких следов.



3. БИОГРАФИЯ ПИФАГОРА:
Великий ученый Пифагор родился около 570 г. до н.э. на острове Самосе. Отцом Пифагора был Мнесарх, резчик по драгоценным камням. Имя же матери Пифагора не известно. По многим античным свидетельствам, родившийся мальчик был сказочно красив, а вскоре проявил и свои незаурядные способ-ности. Среди учителей юного Пифагора традиция называет имена старца Гермодаманта и Ферекида Сиросского. Целые дни проводил юный Пифагор у ног старца Гермо¬даманта, внимая мелодии кифары и гекзаметрам Гомера. Ферекид же был философом и считался основателем италийской школы философии. Ферекид направил взор Пифагора к природе и в ней одной советовал видеть своего первого и главного учителя. Но как бы то ни было, неугомонному воображению юного Пифагора очень скоро стало тесно на маленьком Самосе, и он отправился в Милет, где встретился с другим великим ученым – Фалесом, который посоветовал ему отправиться за знаниями в Египет, что Пифагор и сделал. За всю свою жизнь Пифагор также побывал в Навкратисе(самосской колонии), где изучил язык и религию египтян. В Кротоне Пифагор учредил нечто вроде религиозно-этического братства или тайного монашеского ордена («пифагорейцы»), члены которого обязывались вести так называемый пифагорейский образ жизни. Это был одновременно и религиозный союз, и политический клуб, и научное общество. Многие из проповедуемых ифагором принципов достойны подражания и сейчас.

4. СПОСОБЫ ДОКАЗАТЕЛЬСТВА ТЕОРЕМЫ ПИФАГОРА:

А) ПРОСТЕЙШЕЕ ДОКАЗАТЕЛЬСТВО:

«Квадрат, построенный на гипотенузе прямоугольного треугольника, равновелик сумме квадратов, построенных на его катетах».

Простейшее доказательство теоремы получается в простейшем случае равнобедренного прямоугольного треугольника. Вероятно, с него и начиналась теорема. В самом деле, достаточно посмотреть на мозаику равнобедренных прямоугольных треугольников (рис.1), чтобы убедиться в справедливости теоремы. Например, для такого треугольника АВС: квадрат, построенный на гипотенузе АС, содержит 4 исходных треугольника, а квадраты, построенные на катетах, - по 2. Теорема доказана.


Б) ДОКАЗАТЕЛЬСТВО ЕВКЛИДА:
Данное доказательство приведено в предложении 47 первой книги «Начал». На гипотенузе и катетах прямоугольного треугольника АВС строятся соответствующие квадраты (рис. 2) и доказыва¬ется, что прямоугольник BJLD равновелик квадрату ABFH, а прямоугольник ICEL — квадрату АС КС. Тогда сумма квадратов на катетах будет равна квадрату на гипотенузе.

рис.2
В самом деле, затушеванные на рисунке треугольники ABD и BFC равны по двум сторонам и углу между ними: FB=AB, BC==BD и ABD. Но SABD=1/2 SBJLD, так как у треу¬гольника ABD иABC=FBC=d+ прямоугольника BJLD общее основание BD и общая высота LD. Аналогично SFBC=1\2 SABFH (BF—общее основание, АВ—общая высота). Отсюда, учитывая, что SABD=SFBC , имеем SBJLD= SABFH. Аналогично, используя равен¬ство треугольников ВСК. и АСЕ, доказывается, что SJCEL=SACKG. Итак, SABFH+SACKG=SBJLD+SJCEL= SBCED , что и требовалось доказать. Доказательство Евклида в сравнении с древнекитайским или древнеиндийским выглядит чрезмерно сложным. По этой причине его нередко называли «ходульным» и «наду-манным». Но такое мнение поверхностно. Теорема Пифагора у Евклида является заключи-тельным звеном в цепи предложений 1-й книги «Начал». Для того чтобы логически безупречно построить эту цепь, чтобы каждый шаг доказательства был основан на ранее доказанных предложениях, Евклиду нужен был именно выбранный им путь.

В) АЛГЕБРАИЧЕСКОЕ ДОКАЗАТЕЛЬСТВО ТЕОРЕМЫ ПИФАГОРА:
Пусть Т— прямоугольный треугольник с катетами а, b и гипотенузой с (рис. 3, а). Дока-жем, что с2=а2+Ь2.
Построим квадрат Q со стороной а+Ь (рис. 3, б). На сторонах квадрата Q возьмем точки А, В, С, D так, чтобы отрезки АВ, ВС, CD, DA отсекали от квадрата Q прямоуголь¬ные тре-угольники Т1, Т2, Т3, Т4 с катетами а и b. Четырех¬угольник ABCD обозначим буквой Р. Пока-жем, что Р — квадрат со стороной с. рис.3

Все треугольники Т1, Т2, Т3, Т4 равны треугольнику Т (по двум катетам). Поэтому их гипотенузы равны гипотенузе треугольника Т, т. е. отрезку с. Докажем, что все углы этого — величины острых углов треугольника Т. и четырехугольника прямые.Пусть = 90°. Угол у при вершине А четырехугольника Р+Тогда, как вам известно, =180°.+, состав¬ляет развернутый угол. Поэтому  и вместе с углами, равными =90°. Точно так же доказывается, что и остальные углы= 90°, то +И так как четырехугольника Р прямые. Следователь¬но, четырехугольник Р — квадрат со стороной с. Квадрат Q со стороной а+Ь слагается из квадрата Р со стороной с и четырех треугольников, равных треуголь¬нику Т. Поэтому для их площадей выполняется равенство S(Q)=S(P)+4S(T) .Так как S(Q)=(a+b) 2 ; S(P)=c2 и S(T)=1/2(ab), то, подставляя эти выражения в S(Q)=S(P)+4S(T), получаем равенство (a+b) 2=c2+4*(1/2)ab. Поскольку(a+b)2=a2+b2+2ab,то равенство (a+b)2=c2+4*(1/2)ab мож¬но записать так: a2+b2+2ab=c2+2ab.Из равенства a2+b2+2ab=c2+2ab следует, что с2=а2+Ь2. Ч.Т.Д.

Г) ДОКАЗАТЕЛЬСТВО ТЕОРЕМЫ ПИФАГОРА ЧЕРЕЗ КОСИНУС УГЛА:

Пусть АВС — данный прямоуголь¬ный треугольник с прямым углом С. Проведем высоту CD из вершины прямого угла С (рис. 4).
По определению косинуса угла (Косинусом острого угла прямоугольного треугольника назы¬вается отношение прилежащего катета к гипотенузе) соsА=AD/AC=AC/AB. Отсюда AB*AD=AC2. Аналогично соsВ=BD/BC=BC/AB. Отсюда AB*BD=ВС2. Складывая полученные равенства почленно и замечая, что AD+DB=AB, получим:
АС2+ВС2=АВ(AD + DB)=АВ2. Теорема доказана.
рис.4
Д) ВЕКТОРНОЕ ДОКАЗАТЕЛЬСТВО ТЕОРЕМЫ:
Пусть АВС - прямоугольный треугольник с прямым углом при вершине С, построенный на векторах. Тогда справедливо векторное равенство: b + c = a
откуда имеем
c = a - b
возводя обе части в квадрат, получим
c²=a²+b²-2ab

Так как a перпендикулярно b, то ab=0, откуда

c²=a²+b² или c²=a²+b²
Теорема Пифагора снова доказана.
Если треугольник АВС - произвольный, то та же формула дает т. н. теорему косинусов, обобщающую теорему Пифагора.
рис.5

Е) ДОКАЗАТЕЛЬСТВО ХОУКИНСА:
Приведем еще одно доказательство, которое имеет вычислительный характер, однако сильно отличается от всех предыдущих. Оно опубликовано англичанином Хоукинсом в 1909 году; было ли оно известно до этого- трудно сказать.
Прямоугольный треугольник ABC с прямым углом C повернем на 90° так, чтобы он занял положение A'CB'. Продолжим гипотенузу A'В' за точку A' до пересечения с линией АВ в точке D. Отрезок В'D будет высотой треугольника В'АВ. Рассмотрим теперь заштрихованный четырехугольник A'АВ'В . Его можно разложить на два равнобедренных треугольника САA' и СВВ' (или на два треугольника A'В'А и A'В'В).
SCAA'=b²/2
SCBB'=a²/2
SA'AB'B=(a²+b²)/2
Треугольники A'В'А и A'В'В имеют общее основание с и высоты DA и DB, поэтому :
SA'AB'B=c*DA/2+ c*DB/2=c(DA+DB)/2=c²/2
Сравнивая два полученных выражения для площади, получим:
a²+b²=c²
Теорема доказана.


рис.6

Ж) ГЕОМЕТРИЧЕСКОЕ ДОКАЗАТЕЛЬСТВО МЕТОДОМ ГАРФИЛДА:
Дано: ABC-прямоугольный треугольник
рис.7
Доказать: BC2=AB2+AC2
Доказательство:

1) Построим отрезок CD равный отрезку AB на продолжении катета AC прямоугольного треугольника ABC. Затем опустим перпендикуляр ED к отрезку AD, равный отрезку AC, соединим точки B и E.
2) Площадь фигуры ABED можно найти, если рассматривать её как сумму площадей трёх треугольников:
SABED=2*AB*AC/2+BC2/2

3) Фигура ABED является трапецией, значит, её площадь равна:

SABED=(DE+AB)*AD/2.
4) Если приравнять левые части найденных выражений, то получим:
AB*AC+BC2/2=(DE+AB)(CD+AC)/2
AB*AC+BC2/2= (AC+AB)2/2
AB*AC+BC2/2= AC2/2+AB2/2+AB*AC
BC2=AB2+AC2.
Ч.Т.Д.

З) ДОКАЗАТЕЛЬСТВО ТЕОРЕМЫ ИНДИЙСКИМ МАТЕМАТИКОМ БХАСКАРИ-АЧАРНА:
На рисунке 8 изображен квадрат с выделенными на нем четырьмя равными прямоугольными треугольниками. Именно из такого рисунка исходил в своем доказательстве в XII веке индийский математик Бхаскари-Ачарна.

рис.8
Пусть сторона большого квадрата (она же — гипотенуза прямоугольного треугольника) равна с. Пусть также два его катета равны соответственно a и b. Тогда, в согласии с чертежом, (a − b)2 + (4ab)/2 = с2, то есть с2 = a2 + b2. Следовательно, если треугольник прямоугольный, то сумма квадратов его катетов действительно равна квадрату гипотенузы.

5. ПРИМЕНЕНИЕ ТЕОРЕМЫ ПИФАГОРА :
Область применения теоремы достаточно обширна. Определим возможности, которые дает теорема Пифагора для вычисления длин отрезков некоторых фигур на плоскости: Диагональ d квадрата со стороной а можно рассматривать как гипотенузу прямоугольного равнобедренного треугольника с катетом а.
Таким образом, d=2a²

Теорема Пифагора также применяется в литературе, мобильной связи, архитектуре (индийцы, например, использовали её для построения алтарей, которые по священному пред-писанию должны иметь геометрическую форму, ориентированную относительно четырех сторон горизонта), а также в астрономии. В конце 19 века высказывались разнообразные предположения о существовании обитателей Марса подобных человеку. Вопрос о том, можно ли с помощью световых сигналов объясняться с этими гипотетическими существами, вызвал оживленную дискуссию. Парижской академией наук была даже установлена премия в 100000 франков тому, кто первый установит связь с каким-нибудь обитателем другого небесного тела; эта премия все еще ждет счастливца. В шутку, хотя и не совсем безосновательно , было решено передать обитателям Марса сигнал в виде теоремы Пифагора. Неизвестно, как это сделать, но очевидно, что математический факт, выражаемый теоремой Пифагора имеет место всюду и поэтому похожие на нас обитатели другого мира должны понять такой сигнал.


ПИФАГОРОВЫ тройки:
Пифагоровы тройки – это наборы из трёх натуральных чисел (x, y и z), из которых сумма квадратов двух чисел равна квадрату третьего числа (x2 + y2 = z2 ). В школьной программе пифагоровы тройки не изучаются, появляясь лишь как любопытный частный случай при рассмотрении прямоугольных треугольников. Между тем, пифагоровы тройки являются объектом теории чисел. .. Сейчас уже найдены стороны 50-го «пифабедренного» треугольника, значения которых очень велики.
Поскольку уравнение x2 + y2 = z2 однородно, при домножении x, y и z на одно и то же число получится другая пифагорова тройка. Пифагорова тройка называется примитивной, если она не может быть получена таким способом, то есть x,y,z — взаимно простые числа. Треуголь-ник, стороны которого равны пифагоровым числам, является прямоугольным. Простейший из них — египетский треугольник со сторонами 3, 4 и 5 (32 + 42 = 52).
Некоторые Пифагоровы тройки:
(3, 4, 5), (6, 8, 10), (5, 12, 13), (9, 12, 15), (8, 15, 17), (12, 16, 20), (15, 20, 25), (7, 24, 25), (10, 24, 26), (20, 21, 29), (18, 24, 30), (10, 30, 34), (21, 28, 35), (12, 35, 37), (15, 36, 39), (24, 32, 40), (9, 40, 41), (27, 35, 45), (14, 48, 50), (30, 40, 50)…
Пифагоровы тройки имеют важное значение в геометрии. Несмотря на то, что в школе на изучение Пифагоровых троек не отводится много времени, в настоящее время знание их необходимо при решении многих математических задач.

6. ЗАКЛЮЧЕНИЕ:

В заключении еще раз хочется сказать о важности теоремы. В наши дни теорема Пифагора очень важна и актуальна. И несущественно то, что она была известна за много веков до Пифагора, важно то, что Пифагор выделил её, дополнив собственными исследованиями, повысив значимость в мире математических открытий. Теорема применяется в геометрии на каждом шагу. Из неё или с её помощью можно вывести большинство теорем геометрии. Всего известно около 500 различных доказательств теоремы Пифагора. Это говорит о неослабевающем интересе к ней со стороны широкой математической общественности. Теорема Пифагора продолжает оставаться живительным источником красоты, совершенства и творчества для новых и новых поколений. Несмотря на то что, суть теоремы проста и изящна, но было бы ошибкой думать, что в плане её содержания не осталось места для каких-то новых исследований. Результатом одного из таких исследований являются Пифагоровы тройки - наборы из трёх натуральных чисел, из которых сумма квадратов двух чисел равна квадрату третьего числа.. Сейчас уже найдены стороны 50-го «пифабедренного» треугольника (первый, египетский со сторонами 3, 4 и 5 всем известен), значения которых очень велики. Теорема Пифагора послужила источником для множества обобщений и пло-дородных идей. Глубина этой древней истины, по-видимому, далеко не исчерпана.

К сожалению, невозможно привести все или даже самые красивые доказательства теоремы, однако хочется надеяться, что приведенные примеры убедительно свидетельствуют об огром-ном интересе сегодня, да и вчера, проявляемом по отношению к теореме Пифагора.

7. СПИСОК ИСПОЛЬЗОВАННОЙ ЛИТЕРАТУРЫ:
1) А.П.Киселёв ,Геометрия. Часть первая. Планиметрия, Москва,Просвещение,1969г.
2) Г. Глейзер,Учебно-методическая газета Математика, №4 2005г.
3) Г.Остренкова,Учебно-методическая газета Математика, №24 2001г.
4) Е.Е.Семёнов «Изучаем геометрию», Москва, Просвещение ,1987г.
5) З.А.Скопец Геометрические миниатюры , Москва, Просвещение,1990г.
6) Интернет-источники: http://bankreferatov.ru/ http://kvant.ru/ http://th-pif.narod.ru/formul.html
7) М.В.Ткачева Домашняя математика , Москва, Просвещение ,1994г.

Простейшее доказательство

  Простейшее доказательство теоремы получается в простейшем случае равнобедренного прямоугольного треугольника. В самом деле, достаточно просто посмотреть на мозаику равнобедренных прямоугольных треугольников , чтобы убедиться в справедливости теоремы. Например, для треугольника ABC : квадрат, построенный на гипотенузе АС, содержит 4 исходных треугольника, а квадраты, построенные на катетах,- по два.

Теорема доказана.







Доказательства методом разложения


Существует целый ряд доказательств теоремы Пифагора, в которых квадраты, построенные на катетах и на гипотенузе, разрезаются так, что каждой части квадрата ,построенного на гипотенузе, соответствует часть одного из квадратов, построенных на катетах. Во всех этих случаях для понимания доказательства достаточно одного взгляда на чертеж; рассуждение здесь может быть ограничено единственным словом: "Смотри!", как это делалось в сочинениях древних индусских математиков. Следует, однако, заметить, что на самом деле доказательство нельзя считать полным, пока мы не доказали равенства всех соответствующих друг другу частей. Это почти всегда довольно не трудно сделать, однако может (особенно при большом количестве частей) потребовать довольно продолжительной работы.


Доказательство Эпштейна

Начнем с доказательства Эпштейна(рис. 1) ; его преимуществом является то, что здесь в качестве составных частей разложения фигурируют исключительно треугольники. Чтобы разобраться в чертеже, заметим, что прямая CD проведена перпендикулярно прямой EF.

Разложение на треугольники можно сделать и более наглядным, чем на рисунке.




Доказательство Нильсена.

На рисунке вспомогательные линии изменены по предложению Нильсена.




Доказательство Бетхера .

На рисунке дано весьма наглядное разложение Бетхера.


Доказательство Перигаля.

В учебниках нередко встречается разложение указанное на рисунке (так называемое "колесо с лопастями"; это доказательство нашел Перигаль). Через центр O квадрата, построенного на большем катете, проводим прямые, параллельную и перпендикулярную гипотенузе. Соответствие частей фигуры хорошо видно из чертежа.





Доказательство Гутхейля.

Изображенное на рисунке разложение принадлежит Гутхейлю; для него характерно наглядное расположение отдельных частей, что позволяет сразу увидеть, какие упрощения повлечет за собой случай равнобедренного прямоугольного треугольника.






Доказательство 9 века н.э.

Ранее были представлены только такие доказательства, в которых квадрат, построенный на гипотенузе, с одной стороны, и квадраты,построенные на катетах, с другой, складывались из равных частей. Такие доказательства называются доказательствами при помощи сложения ("аддитивными доказательствами") или, чаще, доказательствами методом разложения. До сих пор мы исходили из обычного расположения квадратов, построенных на соответствующих сторонах треугольника, т. е. вне треугольника. Однако во многих случаях более выгодно другое расположение квадратов.

На рисунке квадраты, построенные на катетах, размещены ступенями один рядом с другим. Эту фигуру, которая встречается в доказательствах, датируемых не позднее, чем 9 столетием н. э., индусы называли "стулом невесты". Способ построения квадрата со стороной, равной гипотенузе, ясен из чертежа. Общая часть двух квадратов, построенных на катетах, и квадрата, построенного на гипотенузе, - неправильный заштрихованный пятиугольник 5. Присоединив к нему треугольники 1 и 2, получим оба квадрата, построенные на катетах; если же заменить треугольники 1 и 2 равными им треугольниками 3 и 4, то получим квадрат, построенный на гипотенузе. На рисунках ниже изображены два различных расположения близких к тому, которое дается на первом рисунке.

















Доказательства методом дополнения

Доказательство первое.

Наряду с доказательствами методом сложения можно привести примеры доказательств при помощи вычитания, называемых также доказательствами методом дополнения. Общая идея таких доказательств заключается в следующем.

От двух равных площадей нужно отнять равновеликие части так, чтобы в одном случае остались два квадрата, построенные на катетах, а в другом- квадрат, построенный на гипотенузе. Ведь если в равенствах

В-А=С и В111

часть А равновелика части А1, а часть В равновелика В1, то части С и С1 также равновелики.


Поясним этот метод на примере. На рис. к обычной пифагоровой фигуре приставлены сверху и снизу треугольники 2 и 3, равные исходному треугольнику 1. Прямая DG обязательно пройдет через C. Заметим теперь (далее мы это докажем), что шестиугольники DABGFE и CAJKHB равновелики. Если мы от первого из них отнимем треугольники 1 и 2, то останутся квадраты, построенные на катетах, а если от второго шестиугольника отнимем равные треугольники 1 и 3, то останется квадрат,построенный на гипотенузе. Отсюда вытекает, что квадрат, построенный на гипотенузе, равновелик сумме квадратов,построенных на катетах.


Остается доказать, что наши шестиугольники равновелики. Заметим, что прямая DG делит верхний шестиугольник на равновеликие части; то же можно сказать о прямой CK и нижнем шестиугольнике. Повернем четырехугольник DABG, составляющий половину шестиугольника DABGFE, вокруг точки А по часовой стрелке на угол 90; тогда он совпадет с четырехугольником CAJK, составляющим половину шестиугольника CAJKHB. Поэтому шестиугольники DABGFE и CAJKHB равновелики.


Другое доказательство методом вычитания.

Познакомимся с другим доказательством методом вычитания. Знакомый нам чертеж теоремы Пифагора заключим в прямоугольную рамку, направления сторон которой совпадают с направлениями катетов треугольника. Продолжим некоторые из отрезков фигуры так, как указано на рисунке, при этом прямоугольник распадается на несколько треугольников, прямоугольников и квадратов. Выбросим из прямоугольника сначала несколько частей так чтобы остался лишь квадрат, построенный на гипотенузе. Эти части следующие:



  1. треугольники 1, 2, 3, 4;

  2. прямоугольник 5;

  3. прямоугольник 6 и квадрат 8;

  4. прямоугольник 7 и квадрат 9;

Затем выбросим из прямоугольника части так, чтобы остались только квадраты, построенные на кататах. Этими частями будут:

  1. прямоугольники 6 и 7;

  2. прямоугольник 5;

  3. прямоугольник 1(заштрихован);

  4. прямоугольник 2(заштрихован);

Нам осталось лишь показать, что отнятые части равновелики. Это легко видеть в силу расположения фигур. Из рисунка ясно, что:

  1. прямоугольник 5 равновелик самому себе;
  2. четыре треугольника 1,2,3,4 равновелики двум прямоугольникам 6 и 7;


  3. прямоугольник 6 и квадрат 8, взятые вместе, равновелики прямоугольнику 1 (заштрихован);;

  4. прямоугольник 7 вместе с квадратом 9 равновелики прямоугольнику 2(заштрихован);

Доказательство закончено.







Другие доказательства

Доказательство Евклида

Это доказательство было приведено Евклидом в его "Началах". По свидетельству Прокла (Византия), оно придумано самим Евклидом. Доказательство Евклида приведено в предложении 47 первой книги "Начал".

На гипотенузе и катетах прямоугольного треугольника АВС строятся соответствующие квадраты и доказывается, что прямоугольник BJLD равновелик квадрату ABFH, а прямоугольник ICEL - квадрату АСКС. Тогда сумма квадратов на катетах будет равна квадрату на гипотенузе.

В самом деле, треугольники ABD и BFC равны по двум сторонам и углу между ними:

FB = AB, BC = BD


РFBC = d + РABC = РABD

Но

SABD = 1/2 S BJLD,

так как у треугольника ABD и прямоугольника BJLD общее основание BD и общая высота LD. Аналогично

SFBC=1\2S ABFH

(BF-общее основание, АВ-общая высота). Отсюда, учитывая, что

SABD=SFBC,

имеем

SBJLD=SABFH.

Аналогично, используя равенство треугольников ВСК и АСЕ, доказывается, что

SJCEL=SACKG.

Итак,

SABFH+SACKG= SBJLD+SJCEL= SBCED,


что и требовалось доказать.




Упрощенное доказательство Евклида

Как в доказательствах методом разложения, так и при доказательстве евклидового типа можно исходить из любого расположения квадратов. Иногда при этом удается достигнуть упрощений.

Пусть квадрат,построенный на одном из катетов (на рисунке это квадрат,построенный на большем катете), расположен с той же стороны катета, что и сам треугольник. Тогда продолжение противоположной катету стороны этого квадрата проходит через вершину квадрата, построенного на гипотенузе. Доказательство в этом случае оказывается совсем простым, т. к. здесь достаточно сравнить площади интересующих нас фигур с площадью одного треугольника(он заштрихован) - площадь этого треугольника равна половине площади квадрата и одновременно половине площади прямоугольника




Доказательство Хоукинсa.

Приведем еще одно доказательство, которое имеет вычислительный характер, однако сильно отличается от всех предыдущих. Оно опубликовано англичанином Хоукинсом в 1909 году; было ли оно известно до этого- трудно сказать.

Прямоугольный треугольник ABC с прямым углом C повернем на 90° так, чтобы он занял положение A'CB'. Продолжим гипотенузу A'В' за точку A' до пересечения с линией АВ в точке D. Отрезок В'D будет высотой треугольника В'АВ. Рассмотрим теперь заштрихованный четырехугольник A'АВ'В . Его можно разложить на два равнобедренных треугольника САA' и СВВ' (или на два треугольника A'В'А и A'В'В).

SCAA'=b²/2


SCBB'=a²/2

SA'AB'B=(a²+b²)/2



Треугольники A'В'А и A'В'В имеют общее основание с и высоты DA и DB, поэтому :

SA'AB'B=c*DA/2+ c*DB/2=c(DA+DB)/2=c²/2

Сравнивая два полученных выражения для площади, получим: a²+b²=c² . Теорема доказана.





Доказательство Вальдхейма.

Это доказательство также имеет вычислительный характер. Можно использовать рисунки для доказательства основанного на вычислении площадей двумя способами.

Для того чтобы доказать теорему пользуясь первым рисунком достаточно только выразить площадь трапеции двумя путями.

Sтрапеции=(a+b)²/2


Sтрапеции=a²b²+c²/2

При равнивая правые части получим: a²+b²=c² . Теорема доказана.













Доказательство основанное на теории подобия.

В прямоугольном треугольника АВС проведем из вершины прямого угла высоту CD; тогда треугольник разобьется на два треугольника, также являющихся прямоугольными. Полученные треугольники будут подобны друг другу и исходному треугольнику. Это легко доказать, пользуясь первым признаком подобия(по двум углам). В самом деле, сразу видно что, кроме прямого угла, треугольники АВС и ACD имеют общий угол a, треугольники CBD и АВС - общий угол b. То, что малые треугольники также подобны друг другу, следует из того, что каждый из них подобен большому треугольнику. Впрочем, это можно установить и непосредственно.



Доказательство индийского математика Басхары изображено на рисунке. В пояснение к нему он написал только одну строчку: "Смотри!". Ученые считают, что он выражал площадь квадрата ,построенного на гипотенузе, как сумму площадей треугольников (4ab/2) и площадь квадрата (a-b)². Следовательно:

c²=4ab/2+(a-b)²


c=2ab+a²-2ab+b²


c²=a²+b² Теорема доказана.




Луночки Гиппократа

Для того, чтобы доказать теорему о гиппократовых луночках, докажем следующее предложение: Если на катетах и на гипотенузе прямоугольного треугольника построены какие угодно подобные между собой фигуры Fa, Fb, Fc, так, что катеты и гипотенуза являются сходственными отрезками этих фигур, то имеет место равенство: Fa+Fb=Fc.

Для доказательства воспользуемся следующей теоремой из теории подобия: площади подобных многоугольников относятся как квадраты сходственных сторон.

Если через Fa, Fb, Fc обозначить площади подобных многоугольников, построенных на катетах a, b и гипотенузе с прямоугольного треугольника, то согласно вспомогательной теореме можно написать:

Fa/Fb/Fc=a²/b²/c².

Эта пропорция означает,что можно найти число k (коэффицент пропорциональности) такое, что

Fa=ka² Fb=kb² Fc=kc².

.

Умножив обе части равенства на k и принимая во внимание предыдущие равенства, получим: Fa+Fb=Fc.

Если равенство Fa+Fb=Fc имеет место хотя бы для одной тройки подобных между собой многоугольников, построенных на катетах и на гипотенузе прямоугольного треугольника АВС так, что АС, ВС и АВ есть сходственные отрезки этих многоугольников, то ka²+kb²=kc²


(где k имеет какое-то определенное значение, зависящее от выбора многоугольников, - нам совершенно не важно, какое именно). Но отсюда вытекает, что а²+b²=с²,

а это влечет за собой тот факт,что равенство Fa+Fb=Fc выполняется для любых построенных на сторонах прямоугольного треугольника подобных многоугольников, в частности, и для квадрато




Познакомимся с одним интересным предложением, которое встречается во многих учебниках геометрии под названием теоремы о Гиппократовых луночках.

Гиппократ Хиосский (вторая половина пятого века до н. э., Афины) занимался квадратурой луночек. Он называл луночкой часть плоскости, ограниченную двумя дугами окружностей. Наше предложение в том виде, как оно будет здесь сформулировано, не встречается у самого Гипократа, который нашел квадратуру только для некоторых луночек. Во всей общности теорему доказал араб Ибн Альхаитам:

"Если на гипотенузе прямоугольного треугольника как на диаметре описать полуокружность, лежащую с той же стороны гипотенузы, что и сам треугольник, то она пройдет через вершину прямого угла." Эту теорему греки приписывали Фалесу Милетскому, но в действительности ее знали еще древние вавилоняне.

Опишем две полуокружности на катетах так, как указано на рисунке, тогда получатся две луночки. Пусть Ка,Кв,Кс- площади полукругов, построенных на катетах и гипотенузе. Согласно теореме, рассмотренной ранее, имеем: а+Кb=Кс.

Этот же результат можно получить, умножив обе части равенства А²+В²=С² на π/8.

В самом деле, равенство (π/8)А+(π/8)В=(π/8)С

означает,что площадь полукруга С диаметром с равна сумме площадей двух других полукругов, с диаметрами a и b. Если мы отнимем те же части(на рисунке они не заштрихованы )как от полукруга,построенного на гипотенузе, так и от полукругов, построенных на катетах, то, вследствие только что доказанной теоремы, получим, что сумма площадей луночек равна площади треугольника.





Векторное док-во

Пусть АВС - прямоугольный треугольник с прямым углом при вершине С, построенный на векторах. Тогда справедливо векторное равенство:b+c=a, откуда имеем c = a - b

возводя обе части в квадрат, получим c²=a²+b²-2ab

Так как a перпендикулярно b, то ab=0, откуда c²=a²+b² или c²=a²+b²

Нами снова доказана теорема Пифагора.

Если треугольник АВС - произвольный, то та же формула дает т. н. теорему косинусов, обобщающую теорему Пифагора.