litceysel.ru
добавить свой файл
1 2 3
Космическая история углеродных молекул


Любая обоснованная теория происхождения жизни должна объяснить существование соединения, встречающихся в современных организмах, и соединений углерода, обнаруживаемых в метеоритах и в изверженных горных породах.

Дж. Бернал

В течение долгого времени ученые полагали, что синтез органических соединений как предшественников жизни происходил в условиях ранней Земли и что безжизненная атмосфера планеты состояла преимущественно из Н2, СН4, NH3 c парами Н2О. В этой смеси могли происходить химические реакции синтеза с образованием органических соединений, о чем косвенно свидетельствовали экспериментальные исследования. Первые опыты по получению органических веществ из водород-аммиак-метановой смеси при пропускании через нее электрических разрядов были поставлены в 1953 г. по инициативе американского физикохимика Г. Юри его учеником С. Миллером. Позднее аналогичные результаты были получены советскими исследователями Т. Е. Павловской и А. Г. Пасынским при воздействии на ту же газовую смесь ультрафиолетовых лучей. Реакции этого типа в газовой среде под действием ионизирующей радиации были названы реакциями Миллера-Юри.

Вообще в данной области были проведены многочисленные экспериментальные исследования. Результаты их обычно рассматривались в качестве подтверждения идеи о том, что ультрафиолетовое излучение Солнца и грозовые явления в первичной атмосфере Земли при определенных температурах и давлениях должны были приводить к массовому образованию сложных углеродных соединений, в том числе белков (рис. 10). Однако в свете современных данных подобные представления следует отбросить. Земля принадлежит к внутренним планетам Солнечной системы и образовалась в термодинамических условиях, отличающихся от тех, в которых сформировались гигантские внешние планеты Юпитер и Сатурн. В своих водород-гелиевых атмосферах они действительно содержат СН4, NH3 и другие углеводороды. Наиболее близкой, хотя и не тождественной первичной атмосфере Земли является атмосфера безжизненной Венеры, состоящая преимущественно из CO2. Глубинные газы первичнон мантии Земли, выделившиеся при вулканических извержениях и давшие начало первичной атмосфере планеты, содержат главным образом Н2О, CO2, SO2, Н2S, N2. Газы аналогичного состава обнаружены в метеоритах. Таким образом, данные современной геохимии и космо-химии не дают никаких указаний на присутствие водорода, аммиака и метана в ранних планетах земной группы.






Наиболее обильный газ первичной атмосферы Земли был представлен СО2. Однако он спонтанно не может превращаться в органические соединения термодинамически менее устойчивые. Скудность водорода или же его быстрая потеря в условиях ранней Земли также резко снижала возможность синтеза органических веществ в атмосфере.-На основании изучения физико-химических равновесии в космических условиях Г. Юри пришел к заключению, что при формировании Земли из прото-планетной туманности значительная часть первичного метана газопылевого облака улетучилась, так как повысились температуры в районе образования планет земной группы.

Отмеченное свидетельствует в пользу вывода о том, что основная масса органических соединений возникла за пределами Земли в период, предшествующий ее рождению. В таком выводе нет ничего необычного или парадоксального - ведь в ходе эволюции вещества Солнечной системы сформировались главные породообразующие минералы нашей планета и органические вещества вплоть до самых высокомолекулярных, давших начало первичным жизненным формам.

Таким образом, проблема происхождения органических веществ, как и проблема происхождения самой жизни, имеет прямое отношение к космохимии самой Солнечной системы. В настоящее время благодаря существенному расширению информации о составе различных тел Солнечной системы мы можем значительно глубже заглянуть в химическую историю вещества. Эти данные позволяют прийти к некоторым эмпирическим обобщениям, необходимым для понимания процесса образования органических веществ в протопланетной материи.

1. Земля, планеты и метеориты возникли из вещества Солнца. В пользу этого свидетельствует близость изотопного состава химических элементов, их слагающих. Различие химического состава планет и метеоритов - результат позднейших процессов, связанных с дифференциацией и фракционированием первичной более или менее однородной материи солнечного состава.


2. Возраст Земли, Луны, метеоритов и, вероятно, других планет, по данным ядерной геохронологии, 4,6- 4,5 млрд лет. Метеориты, как осколки астероидов, являются древнейшими каменными телами Солнечной системы.

3. Родоначальные тела хондритов - продукты окислительно-восстановительных процессов в протопланетной туманности. У них различная степень окисления. Энстати-товые хондриты наиболее восстановлены, поскольку все железо в них находится в металлическом состоянии, кальций представлен ольдгамитом (CaS), фосфор - шрейберзи-том (Fe, Ni, Со)зР, хром входит в состав добреелита (FeCr2S4), a небольшая часть кремния частично растворена в металлическом железе. Материал обычных хондритов более окислен, и перечисленные минералы встречаются в небольших количествах. Углистые хондриты наиболее окисленные из метеоритов. В них все железо химически связано с кислородом в силикатах и магнетите. Сера присутствует в составе сульфатов.

4. Планеты земной группы и астероиды отличаются химическим составом, что отражает условия дифференпиациии и физико-хямических процессов в период их обраэо-вавия. В близких ж Солнцу планетах содержится больше металлячеетаго железа, чем в более отдаленных. Меркурий на 3/4 свстоит из металлической фазы, Венера и Земля - на 1/3, отдаленный Марс - на 1/4. В поясе астероидов ^находятся тела преимущественно типа углистьгх хондритов, т. е. максимально окисленные. В зависимости от гелиоцентрического расстояния планеты земной группы и астероиды представляются телами различной степени окисления. Во время образования Солнечной системы ближе к Солнцу процессы окисления железа (и других веществ) протекали слабо, а по мере удаления от него интенсивность их возрастала.

5. Образование тяжелых радиоактивных и других элементов завершилось непосредственно перед формированием Солнечной системы. В метеоритах и отдельных их минеральных фракциях обнаружены следы вымерших радиоактивных изотопов: 26Al, 129I, 146Sm, 236U, 244Pu, 247Cm. Происхождение Солнечней системы связано с происхождением химических элементов. Период времени между окончанием естественного ядерного синтеза и возникновением твердых тел в Солнечной системе оценивается примерно в 50-100 млн лет. Именно в этом промежутке при охлаждении солнечного газа образовались мелкие частицы и капельки как продукты конденсации, которые в дальнейшем послужили строительным материалом для планет земной группы и метеоритных тел.


6. Вся Солнечная система химически дифференцирована. Ее тела изменяют свой состав в зависимости от гелиоцентрического расстояния, что является отражением установившейся определенной химической зональности протопланетной туманности в период ее образования. Так, если мы учтем главные планетные компоненты в виде следующего ряда: Fe-(0, Si, Mg)-H20-CH4, то по мере возрастания расстояния от Солнца в соответствующих телах увеличивается содержание компонентов слева направо. Ближайший к Солнцу Меркурий содержит преимущественно два первых компонента, в углистых хондритах - астероидах все железо окислено и уже содержится заметное количество H2О. Большая часть спутников гигантских планет покрыта льдом (Н2О), а далекий Плутон состоит из верхней оболочки, сложенной метаном (СН4).

Указанные положения, основанные на современном кос-мохимическом материале, позволяют прийти к общему заключению о том, что происхождение Солнечной системы в первую очередь было связано с физико-химическими процессами в широком смысле слова. Эти процессы зависели от гелиоцентрического расстояния и степени охлаждения вещества в определенной зоне туманности.

В результате усилий довольно широкого круга исследователей на смену космогоническим гипотезам приходит новая теория, опирающаяся главным образом на данные космохимии и учитывающая физико-химические процессы при охлаждении первичной солнечной туманности, которые привели к химической неоднородности различных тел Солнечной системы,

Формирование химического состава Земли и планет определялось последовательной конденсацией элементов и их соединений в порядке, обратном их летучести, - из газовой системы приближенно солнечного состава: сперва тугоплавких, затем труднолетучих и наконец наиболее летучих элементов и их соединений. Температуры конденсации элементов и их соединений из газа солнечного состава при охлаждении ниже 2000 К были вычислены по уравнениям химической термодинамики Э. Андерсом, Дж. Ларимером, Л. Гроссманом, Дж. Льюисом и другими авторами. В широких пределах возможных давлений первыми вьвделяются капли железа при температуре 1500 К и ниже, затем силикаты магния (Mg2Si04, MgSiO3), сульфиды (FeS). В конце, ниже 200 К, конденсируются такие вещества, как вода (лед) и ртуть. Результаты этих расчетов следует принимать как первое приближение к решению химической эволюции протопланетной туманности. В действительности в ней происходили сложные процессы взаимодействия между всеми химическими элементами таблицы Менделеева, а также между ранее выделившимися кон-денсатами и окружающей средой газовой фазы.


В самом общем виде можно себе представить, что образование планет совершалось в два этапа. Первый этап знаменовался охлаждением и конденсацией вещества газовой туманности. В связи с разной скоростью остывания в зависимости от гелиоцентрического расстояния туманность в отдельных зонах приобрела различный химический состав. Эта неоднородность увеличивалась под влиянием солнечных лучей, которые отбрасывали легкие газы в периферическую часть Солнечной системы, в область формирования гигантских планет. Второй этап - это процесс аккумуля-ции конденсированных частиц в протопланеты. Можно допустить, что оба этапа не были разделены сколько-нибудь значительным промежутком времени. Аккумуляция в определенных участках протопланетной туманности началась тогда, когда конденсация еще не завершилась.

Неясным еще остается вопрос о последовательности аккумуляции протопланетных частиц. Ряд геохимических и физических данных указывает скорее в пользу гетерогенной аккумуляции планеты, когда последовательность аккумуляции повторяла последовательность конденсации. В этом случае верхние горизонты первичной Земли оказались сложенными самыми последними конденсатами сол--нечной туманности. Центральная часть ядра Земли образовалась при аккумуляции металлического железа, которое покрылось затем конденсатами в виде смеси металла, силикатов и троилита. Позже всех на поверхность растущей Земли поступил материал, близкий по составу к углистым хондритам, обогащенный летучими и органическими веществами.

На последних стадиях остывания солнечной туманности происходило массовое образование органических соединений в области формирования планет земной группы, астероидного пояса и, вероятно, очень обширного пространства в целом, включая область формирования комет.

В связи с повышенной распространенностью водорода в первичной туманности возникали простейшие его соединения с углеродом и азотом. Поскольку наиболее стабильной формой углерода был СО, то по мере охлаждения сол-нечноп туманности происходили следующие реакции:






В отдельных областях протопланетной туманности, очевидно в области формирования гигантских планет, куда давлением солнечной радиации были перенесены легкие молекулы, появлялись H2, CH4 NH3, Н2О. При сочетании этих компонентов могли совершаться реакции типа Миллера-Юри под влиянием ионизирующей радиации, что приводило к образованию многочисленных органических соединений. Однако роль солнечной радиации как ионизирующего фактора, по всей вероятности, была ничтожной. Зараженная пылью протопланетная туманность была непрозрачной для ультрафиолетового света.

Тем не менее можно утверждать, что в ранней Солнечной системе существовали мощные источники радиации, вызывающие фотохимические реакции. К ним относятся повсеместно рассеянные радиоактивные язотопы, ватадя-щиеся как в газовой, так и в твердых пылевых фааах пер" вичной туманности. Современная радиоактивность материала Солнечной системы определяется главщым образом наличием изотопов 232Th, 235U, 238U, 40К, которых 4,5 млрд лет назад было значительно ;больше, например 235U было почти в 80, а 40К в 10 раз больше, чем сейчас. Кроме того, в период формирования планет и родоначальных метеоритных тел, возникших в связи с завершением процессов ядерного синтеза, присутствовали сильно радиоактивные изотопы. Однако они вскоре вымерли, поскольку обладали периодом полураспада в пределах 1-100 млн лет. Некоторые из вымерших радиоактивных изотопов пред-ставлены в табл. 8.

Учитывая эти обстоятельства, нетрудно заключить, что сама естественная радиоактивность как наследство болев древней космической эпохи синтеза нуклидов в виде альфа-, вета- и гамма-излучений могла и должна была ионизировать окружающую среду, стимулируя многие химические реакции, в том числе синтез органических соединений. Таким образом, само веществе, законы сил, заложенных в атомах, включая свойства 'ядер и электронных оболочек, определили в исторической последовательности оптимальную обстановку для создания высокомолекулярных органических соединений.


По мере выделения из газовой фазы твердых частиц при охлаждении солнечной туманности и реакций этих частиц с оставшейся газовой средой возникали также определенные соединения, которые явились хорошими катализаторами многих химических реакций. Органические соединения, найденные в метеоритах, образовывались преимущественно путем химических реакций между Н, СО и простейшими соединениями N. Наиболее вероятны в этих условиях реакции типа Фишера-Тропша. В общем виде их можно записать так:





Реакции этого типа протекают даже в благоприятных термодинамических условиях очень медленно, но они резко ускоряются в присутствии катализаторов.





На последних стадиях остывания солнечной туманности, когда основные тугоплавкие компоненты (металлическое железо, силикаты, окислы и др.) уже конденсировались в виде пылевых частиц, происходили процессы гидратации ранее выделившихся силикатов (преимущественно оливина) и образования совместно или позже органических соединений. При температурах ниже 500 К шли реакции гидратации между оливином и парами воды:





Продукты этих реакций в виде гидратированных силикатов, магнетита и карбонатов действительно слагают основную массу хондритов типа C1 в качестве породообразующих минералов. По данным разных методов, типичные минеральные ассоциации углистых хондритов формировались в интервале температур 300-430 К.

Таким образом, можно заключить, что ассоциация органического вещества с низкотемпературными минеральными комплексами - типичное явление в космохимии метеоритов. По структурным данным органические соединения были синтезированы на поверхности минеральных зерен, впоследствии вошедших в состав углистых хондритов. Под микроскопом было замечено, что много органического вещества метеоритов присутствует в виде скругленных флюоресцирующих частиц от 1 до 3 мкм в диаметре. Ядрышки магнетита или гидратированного силиката найдены в центре этих частиц.


Отмеченные выше процессы каталитического синтеза органических соединений в космических условиях подтверждаются также опытными данными. Экспериментальные исследования по моделированию реакций типа .Фишера-Тропша в условиях, близких к космическим, были выполнены Д. Иоширо, Р. Хайатсу и Э. Андерсом. Было обнаружено, что когда СО, Н2, NH3 вступают в реакции при температурах 150-500°С в присутствии никеля, алюминия или глинистых минералов в качестве катализаторов, то образуются многие органические вещества, включая аминокислоты. Исследования в этой области, в настоящее время ведущиеся довольно интенсивно, подтверждают ранее полученные результаты. Термодинамические условия формирования органических соединений в остывающей газовой туманности солнечного состава представлены на рис. 11.

Следует отметить, что частицы естественных катализаторов в солнечной туманности обладали первоначально также повышенной радиоактивностью, воздействующей на окружающую среду. Поэтому можно полагать, что синтез органических веществ проходил как под влиянием явлений катализа, так и под воздействием радиоактивности.

Пока еще мало опытов по экспериментальному моделированию синтеза органических веществ под непосредственным воздействием излучений радиоактивных изото-ггов на определенные газовые смеси, которые близки по составу к предполагаемой туманности. Проводились лишь ксследования американских ученых С. Палма, М. Кальвина, С. Понамперумы по облучению смеси СН4, NH3, H2O вета-лучами. В результате происходили реакции, которые привели к образованию алифатических соединений, аде-нина и аминокислот. Однако особый интерес представляют результаты опытов Д. Гпдлея и др. [Gidiey et al., 1982 ]. Облучая бета-лучами примитивные газовые смеси, эти исследователи установили, что под действием вета-излучения происходит образование асимметричных молекул органических веществ однородного структурного типа, включая аминокислоты и сахара. В связи с этим следует отметить, что одной из фундаментальных особенностей живой материи является оптическая молекулярная асимметрия главных компонентов организмов -- белков и нуклеиновых кислот. В состав белков входят только L-амино-кислоты. В связи с этим можно предположить, что действие излучений радиоактивных элементов было решающим фактором образования асимметричных молекул органических соединений, которые оказались наиболее подходящими для формирования живого вещества,






По-видимому, синтез органических веществ в древних космических системах мог происходить при определенных дозах ионизирующей радиации. Радиоактивные излучения высокой интенсивности разрушают химические соединения. Поэтому следует допустить, что при общем снижении радиационного фона в период распада вымерших и ныне существующих радиоактивных изотопов был достигнут какой-то оптимум радиоактивного воздействия на исходные вещества, благоприятный для процессов синтеза органических соединений.

Особенности химических и изотопных данных по уг-листым хондритам показывают, что накануне формирования родительских тел этих метеоритов синтез органических веществ осуществлялся преимущественно путем каталитических реакций типа Фишера-Тропша и в меньшей мере путем реакций типа Миллера-Юри. В частности, это можно видеть при сравнении молекулярных масс-спектрограмм для углеводородов, полученных в результате реакций типа Фишера-Тропша искусственно, и углеводородов метеорита Мурчисон (рис. 12). Обращает на себя внимание хорошее совпадение определенных максимумов для двух образцов.

Учитывая вышеизложенное, нетрудно прийти к заключению, что синтез довольно сложных органических соединений был закономерным этапом в химической эволюции Солнечной системы в канун формирования планет. Возникшие в космических условиях органические вещества вошли в состав многих тел, но лишь на Земле реализовались возможности прогрессивной эволюции. В результате быстро сформировались саморегули--рующие высокомолекулярные системы - предки первых живых организмов. В метеоритах и их родоначальных телах химическая эволюция оказалась замороженной.

Органические вещества космического происхождения попали на растущую Землю на последних стадиях ее аккумуляции совместно с материалом типа углистых хонд-ритов. Следует при этом отметить, что по ряду геохимических и изотопных данных материал первичной верхней мантии Земли был близок к материалу типа углистых хондритов как источнику воды и других летучих веществ. Все больше выявляется дополнительных данных в пользу этого заключения. В дальнейшем при радиогенном нагреве верхней первичной мантии выделялись газы и пары, давшие начало образованию атмосферы и гидросферы. При этом были вынесены и органические соединения, которые изменились в сторону прогрессивной эволюции, находясь в тесном контакте с твердыми фазами различной степени измельчения - от коллоидных частиц глинистых минералов до крупных камней и глыб как первых продуктов выветривания новорожденной коры планеты. Этот твердый материал отличался повышенной радиоактивностью на ранних стадиях развития нашей планеты.


Однако насколько далеко продвинулась химическая эволюция вещества в космических условиях, мы не знаем. Те углистые хондриты, которые изучены в отношении содержания органики и недавно к нам попали из пояса астероидов, могут рассматриваться лишь как вероятный аналог того материала, который создал верхние горизонты нашей планеты. Но их нельзя считать полностью тождественными первичной верхней мантии Земли.





По-видимому, можно наметить два пути решения проблемы: либо химическая эволюция, начавшись в космических условиях, продолжалась в условиях Земли и в относительно короткие сроки привела к возникновению примитивных живых организмов, либо образование первых сложных молекул ДНК, лежащих в основе наследственности, произошло в космических условиях, а полная реализация возможностей ДНК наступила в первых водоемах нашей планеты, содержащих растворенные органические вещества.


Возникновение биосферы и главные черты ее развития

Живое вещество всегда, в течение всего геологического времени, было и остается составной частью биосферы, источником энергии, ею захватываемой из солнечных излучений,- веществом, находящимся в активном состоянии, имеющим основное влияние на ход и направление геохимических процессов химических элементов во всей земной коре.

В. И. Вернадский

Развитие органических соединений, как и живого вещества, теснейшим образом связано с водой. Но проблема происхождения воды на нашей планете относится к области изучения заключительных стадий аккрепии. Тогда наиболее низкотемпературные конденсата солнечной туманности - гидратированные силикаты, органические вещества и сама вода в адсорбированном состоянии в твердых частицах или в виде частиц космического льда -завершили формирование планет земной группы. Наиболее полно эти конденсата представлены в углистых хондри-тах типа Cl. Однако на современном утовне знаний можно допустить, что какая-то часть воды поступила на планеты на последних X'f1тадиях аккреции. Особенно отчетливо выражен этот процесс на ледяных спутниках внешних планет, оболочки которых, по всей вероятности, отражают результат выпадения больших количеств космического снега, покрывшего более раннюю поверхность этих планетных тел. В целом механизм вхождения летучих компонентов в состав планет земной группы представляет собой трудную, нерешенную проблему. Также важной и нерешенной остается проблема вхождения органических веществ в состав Земли и планет земной группы.


Если допустить, что в эпоху завершения образования Земля получила в общей сложности примерно 1% материала типа углистых хондритов, то нетрудно подсчитать, что в начале развития наша планета приобрела n-1017 т органического вещества абиогенного происхождения. Общее количество органического углерода в земной коре оценивается величиной 3,8-1015 т, что на два порядка ниже предполагаемого первичного органического углерода в составе верхних слоев новорожденной Земли, При этом следует учесть, что огромное количество органического вещества земной коры в виде рассеянной органики, углей и нефти возникло потом в ходе фотосинтетической деятельности организмов, использовавших углекислый газ глубинного мантийного происхождения либо первичной атмосферы, но не то первичное органическое вещество, которое попало на Землю на самых ранних втапах ее развития. Таким образом, общее количество первичного органического вещества, которое Земля мог-яа получить в наследство от протопланетной туманности, не может быть оценено количественно на современном этапе наших знаний. Какая именно доля вещества типа углистых хондритов завершила формирование нашей планеты, пока неизвестно.

Однако данные современной космохимии свидетельствуют о том, что в период своего образования наша планета в общем получила достаточное количество органических соединений, чтобы путем полимеризации аминокислот, сложных углеводородов и других соединений возникли саморегулирующиеся системы, необходимые для живого вещества.

По мнению целого ряда исследователей, на ранних этапах своего развития жизнь не была связана с отдельными живыми организмами, а выражалась в едином живом веществе. Согласно В. И. Вернадскому, происхождение жизни сводится к происхождению биосферы, которая с самого начала была сложной саморегулирующейся системой. Большое разнообразие геохимических функций живого вещества вытекало хотя бы из того, что любая, самая примитивная клетка, находясь в водной, морской среде, имела теснейший контакт со всеми химическими элементами таблицы Менделеева. Эти примитивные организмы, естественно, выбирали в процессе жизнедеятельности не все элементы, а в первую очередь те, которые благоприятствовали их росту и совершенствованию целого ряда физиологических процессов.


В этом отношении В. И. Вернадский [1940] отмечал: ''Вывод о необходимости одновременной чрезвычайно разнообразной геохимической функции в биосфере представителей жизни является основным условием ее появления. Каково бы это появление ни было, оно должно быть представлено не совокупностью неделимых одного вида, а совокупностью многих видов, морфологически принадлежащих к разным резко разделенным классам организмов, или же гипотетически особой, отличной от видов, неизвестной нам формой живого вещества. Возможность полного осуществления всех геохимических функций организмов в биосфере одноклеточными организмами делает вероятным, что таково было первое появление жизни...

Таким образом, первое появление жизни при создании биосферы должно было произойти не в виде появления какого-нибудь вида организма, а в виде совокупности, отвечающей геохимическим функциям жизни. Должны были сразу появиться биоценозы'' (с. 87).

Можно предположить, что химическая эволюция в космической туманности с возрастанием роли каталитических реакций могла привести к образованию молекул ДНК. Однако реализация ее функций оказалась возможной лишь в пределах Земли, где на основании развития живого вещества сформировалась ранняя биосфера как сочетание благоприятных условий для жизни со стороны биокосных систем и самого живого вещества. В остальных телах Солнечной системы химическая эволюция оказалась замороженной.

В настоящее время принято четкое подразделение организмов на автотрофшле и гетеротрофные по способу питания. Однако в ранней биосфере Земли соотношение гетеротрофных и автотрофньгх организмов было иным. Какое точно, мы еще не знаем. Единственное, что можно допустить, это то, что фотосинтезирующая автотрофная биосфера, отмеченная данными изотопной геохимии 4 млрд лет назад, была образованием вторичным и возникла на основе биосферы иного биогеохимического типа.

Действительно, детальное изучение фотосинтеза показало, что он имеет сложный характер. Этот процесс не мог быть первым в истории живого вещества. Поэтому все гипотезы о первичности автотрофных организмов оказались несостоятельными. В свете современных данных складывается представление о первичности гетеротрофной формы обмена веществ в первичных организмах. В качестве обоснования первичности гетеротрофного питания можно привести следующую аргументацию.


1. Все современные организмы обладают системами, приспособленными к использованию готовых органических веществ как исходного строительного материала для процессов биосинтеза.

2. Преобладающее большинство видов организмов в современной биосфере Земли может существовать только при постоянном снабжении готовыми органическими веществами.

3. У гетеротрофных организмов не встречается никаких признаков или рудиментарных остатков тех специфических ферментных комплексов и биохимических реакций, которые необходимы для автотрофного способа питания. Последний довод наиболее существен. Таким образом, приведенная выше аргументация свидетельствует о вторичности автотрофной фотосинтетической жизни в биосфере на нашей планете.

Исходя из вышеизложенного, можно заключить, что первичная биосфера нашей планеты, во-первых, ограничивалась водной средой, во-вторых, была насыщена гетеротрофными организмами, которые питались растворенными в воде органическими веществами, ранее возникшими преимущественно в космохимических условиях. Длительность существования подобной биосферы, скорее всего, занимала небольшой отрезок геологического времени.

Первичные гетеротрофные организмы, обладая свойствами живого вещества, быстро размножались и, естественно, быстро исчерпали свою питательную базу. Поэтому, достигнув максимальной биомассы, они должны были вымирать или перейти к автотрофному фотосинтетическому способу питания. Этот новый способ питания способствовал быстрому расселению организмов у поверхности первичных водоемов. Однако первичная поверхность новорожденной Земли, лишенная свободного кислорода, облучалась ультрафиолетовой радиацией Солнца. Поэтому Г. Гаффрон допустил, что первичные фотохимические механизмы, принимавшие участие в последовательном синтезе органических веществ, а позже и живых организмов, первоначально использовали радиацию в ультрафиолетовой области спектра. Только после возникновения озонового экрана в связи с появлением свободного кислорода как побочного продукта того же фотосинтеза автотрофный фотосинтетический процесс начал использовать излучение в видимой части солнечного спектра. По мнению видного советского биолога М. М. Кам-шилова, жизнь, по всей вероятности, развивалась как круговорот веществ при тесном взаимодействии гетеротрофных и автотрофных организмов. Солнечное излучение было главным энергетическим фактором жизни, и ее возникновение заключалось в установлении круговых обменных процессов с использованием фотонов света.


Первичные гетеротрофные микроорганизмы обитали в древних водоемах лишь некоторое время. Затем их оттеснили фотоавтотрофные организмы, создавшие свободный кислород, который стал настоящим разрушителем для гетеротрофов. Можно полагать, что в раннем океане происходила борьба между первичными и вторичными организмами. В воде, обогащенной сероводородом, было мало свободного кислорода. Он уходил на хемосинтез некоторых организмов и поглощался минеральными недоокис-яенными веществами океана и первичной литосферы. Борьба за существование шла между фотосинтезирую-щими организмами планктона в освещенной части моря и организмами, поглощающими кислород при хемосинтезе и разложении органических остатков. Это стало одной из главных причин, определивших количество свободного кислорода в биосфере. Эта борьба завершилась победои фотосинтезирующих автотрофных организмов, которые, по существу, оттеснили анаэробную микрофлору в зону формирования глубоководных илов. В общем эволюция окислительных функций проходила при возрастании окислительно-восстановительного потенциала.

В настоящее время, исходя из некоторых геохимических данных, мы можем качественно реставрировать состав первичной атмосферы и гидросферы как среды для зарождения и развития ранней жизни. Вода и первичные газы атмосферы относятся к летучим веществам нашей планеты, и естественно, что их история связана с единым процессом дегазации первичной мантии. Ряд компонентов, слагающих в настоящее время осадочные горные породы, гидросферу и атмосферу, .представляют собой действительно летучие вещества. Если сравнить их количество в составе всего комплекса осадочных пород, гидросферы и атмосферы с тем количеством, которое могло освободиться при выветривании п переработке кристаллических изверженных пород земной коры, то обнаружится большая разница, которую В. Руби предложил именовать избытком летучих.

Избыток летучих - довольно внушительная величина и по отдельным компонентам превышает в десятки и даже сотни раз летучий материал от выветривания коренных изверженных пород литосферы. В избытке летучих паров Н2О в 128 раз, СО2 в 83, a Cl в 60 раз больше, чем это могла бы продуцировать первичная земная кора при ее полном интенсивном разрушении. Состав избытка летучих следующий (в вес. % ) :










Состав избытка летучих чрезвычайно близок к составу вулканических газов. Наиболее типичные составы газов глубинного и магматического происхождения представлены в табл. 9.

Если даже СО2 в действующих вулканах возник за счет термического разложения карбонатов, то и в этом случае он был заимствован из более ранней атмосферы в процессе образования самых древних карбонатных осадочных пород.

В порядке распространения вулканические газы сложены из Н2О, СО2, N2. При таком составе атмосферы наличие органических соединений и тем более их возникновение термодинамически невыгодно: любые органические соединения, состоящие из H, C, N, О, менее устойчивы, чем перечисленные выше основные компоненты первичной атмосферы.

При формировании первичных атмосферы и океана находящиеся в ранней мантии довольно сложные органические вещества были в тесном контакте с твердыми частицами силикатов, которые в дальнейшем могли играть роль сильных катализаторов в процессе образования все более сложных соединений.

Данные по вулканическим газам указывают вполне определенно, что в ходе извержения выделялся молекулярный азот (N2), но не аммиак; следовательно, аммиак никогда не был главной составной частью земной атмосферы.

Уже отмечалось, что период существования гетеротрофной биосферы был исключительно коротким, поэтому запасы органических веществ в первичных водоемах не могли возобновляться так же, как запасы автотрофных организмов. Правда, можно допустить, что трупы гетеротрофных организмов все же непрерывно пополняли запас питательных органических веществ. Таким образом, существовал баланс между живыми гетеротрофными и их разложившимися остатками.

Из сказанного можно предположить, что источник живого вещества и воды был единым, точнее, единым был источник летучих на Земле и органического вещества. Это были верхние горизонты мантии, возникшей главным образом за счет аккреции первичного вещества типа уг-листых хондритов. При этом нельзя просто отождествлять материал первичной верхней мантии Земли с материалом углистых хондритов. Речь может идти лишь о близких аналогах, поскольку состав отдельных зон первичной солнечной туманности зависел от гелиоцентрического расстояния.


Первичную атмосферу Земли, с которой так или иначе была связана ранняя жизнь, можно восстановить, сравнив ее с таковой других планет земной группы, таких, как Венера или Марс (табл. 10). С появлением фотосинтеза и свободного кислорода первоначальная атмосфера Земли коренным образом изменилась.

Современный уровень наших знаний позволяет принять в качестве гипотезы положение о том, что химическая эволюция в протопланетной туманности с возрастанием роли каталитических и радиохимических реакции на заключительных стадиях охлаждения могла привести не только к образованию сложных органических соединений, что является реально установленным фактом, но и к возникновению молекул ДНК.

Следует подчеркнуть одно важное обстоятельство: биологическая эволюция возникшей биосферы проходила необратимым путем, от простого к сложному. На это обстоятельство обратил внимание в 1893 г. видный бельгийский палеонтолог Л. Долло (1857-1931), сформулировавший закон необратимости эволюции. Согласно этому закону, организм не может вернуться, хотя бы частично, к тому состоянию, которое было свойственно его предкам. Далее, ссылаясь на Ч. Дарвина, он отмечал, что эволюционное превращение организмов происходит вследствие закрепления под влиянием естественного отбора, вызванного борьбой за существование полезных индивидуальных вариации. Все виды растений и животных со времени своего появления на Земле обязаны происхождением этому основному закону.




Необратимость биологической эволюции, естественно, предполагает, что сам процесс возникновения живого вещества и биосферы протекал в необратимых условиях. Наиболее типичным необратимым процессом можно признать радиоактивность. Ее возможная роль в синтезе органических веществ уже ранее была отмечена. Радиоактивность есть общее и наиболее глубокое свойство вещества, отражение процессов построения нуклидов в канун образования Солнечной системы. Радиоактивность создавала тот естественный радиационный фон, в котором протекала химическая эволюция как в космосе, так и не ранней Земле. Еще в 1926 г. было установлено, что при облучении метана происходит полимеризация углеводородов с образованием все более сложных многоатомных молекул.


По всем данным, на нашей планете наиболее благоприятные условия для развития жизни создавались в морской воде - естественном растворе, содержащем все химические элементы. Сама радиоактивность морской воды ранней Земли определялась главным образом растворенными изотопами 40К, 235U, 238U. Учитывая только скорость их распада, нетрудно подсчитать, что сама морская вода была в 20-30 раз более радиоактивной, чем сейчас. Возможно, что дополнительную радиоактивность вносил быстро вымирающий 129 J мизерные количества которого могли вызвать различные радиационные и ионизационные эффекты в связи с его сильной удельной радиоактивностью. Так же, вероятно, играли свою роль быстро вымершие радиоактивные изотопы, указанные в табл. 8.

Роль радиоактивности в развитии жизни на Земле представляет собой проблему, к решению которой мы только недавно стали приближаться. Воздействие радиоактивности на живые организмы уменьшалось в ходе геологического времени. При этом мы должны исходить из того факта, что просто организованные водоросли и бактерии переносят значительно более высокие дозы радиации, чем высокоорганизованные формы животных и растений. Отсюда можно высказать предположение, что меньшая чувствительность к радиоактивности простых форм жизни связана с возникновением их в ранние эпохи развития биосферы, когда радиоактивность окружающей среды была выше современной.

Среди металлов, входящих в состав организмов и преимущественно растений, калий наиболее распространенный и обильный элемент. А. И. Перельман высказал предположение, что биофильное поведение калия связано с его радиоактивностью в историческом аспекте. На заре своего развития жизнь, полностью еще не освоив механизм фотосинтеза, нуждалась в источниках энергии. Усваивая калий, первичные организмы получали не только вещество с нужными химическими свойствами, но и дополнительный источник свободной энергии. Это могло определить более интенсивное биологическое усвоение, которое закреплялось наследственностью. Поглощение калия передавалось и более высокоорганизованным формам жизни, для которых радиоактивность уже не имела существенного значения. Однако установившаяся физиологическая роль калия заставляла поглощать его в повышенных количествах.


Основным событием при зарождении первых организмов было образование спиральных молекул ДНК, что в УСЛОВИЯХ обилия органических веществ могло быть относительно быстрым процессом. Однако, по-видимому, возник не один организм, а живое вещество. И лишь значительно позже оно разделилось на индивидуальные сферические формы, ставшие родоначальниками организмов.

В дальнейшем в живом веществе происходили процессы усложнения. Произошло качественное изменение в эволюции живой материи, связанное с точностью воспроизведения нуклеиновых кислот как кодирующего процесса синтеза белков, которые значительно превосходили остальные органические соединения по своим биокатали-тяческим свойствам.

В процессе размножения новые организмы занимали все пространство, пригодное для жизни, что явилось важным условием завершения формирования биосферы в целом. В. И. Вернадский выдвинул принцип постоянства биомассы живого вещества, распространив его на всю историю планеты. Этот принцип был и остается глубоким научным обобщением. Однако следует подчеркнуть, что он имеет относительное значение. Величайшая напряженность жизни, выражающаяся в высоких темпах размножения мельчайших организмов, приводит к планетарному равновесию между естественной продукцией живого вещества и его разложением. Поэтому сейчас правильнее говорить о вековой тенденции к установлению постоянства биомассы для определенных, может быть даже значительных, интервалов геологического времени.

По данным молекулярной биологии, древнеишие микробы были представлены гетеротрофными организмами, которые размножались в среде с обильными органическими и минеральными питательными веществами. Эти питательные вещества включали по крайней мере рибозу, дезоксирибозу, фосфат, пурины и их предшественников, пиримидины, разнообразные ''белковые'' и ''небелковые'' аминокислоты. На ранних стадиях развития Земли фосфаты Na, К, Са имелись, вероятно, в достаточном количестве, как продукты выветривания первых горных пород. Кроме того, в качестве пищи могли быть использованы многие неизвестные или неидентифицированные соединения, в том числе некоторые смолообразные длинные полимеры.


Для первых организмов характерным был процесс ферментативного превращения органических веществ - брожение, где акцепторами электронов были другие органические вещества. Осуществление таких превращений в промежуточном обмене едва ли не во всех организмах служит аргументом в пользу древности этих процессов.

В ранней гетеротрофной биосфере Земли вскоре зародились организмы, способные поглощать углекислый газ, используя энергию солнечных лучей. По Л. Маргелис, биосинтетическая фиксация углекислого газа, столь обильного в первичной атмосфере Земли, происходила тремя способами.

Первая, наиболее примитивная фиксация была свойственна большой группе микроорганизмов, не чувствительных к видимому свету. Вторая возникла при участии фосфоснолпируват - карбоксилазы, которая наблюдается у анаэробных фотосинтезирующих бактерий. Третья фиксация СО2 совершалась при участии рибилозобиофосфат - карбоксилазы. Она присуща многим аэробным организмам и типична для большинства фотосинтетиков и хемоавтотрофов. Почти одновременно выработалась фиксация атмосферного азота. Это идущий с затратой энергии анаэробный процесс, обнаруженный только у прокариот.

Фотосинтетические пигментные системы образовались у прокариот еще до того, как последние в результате симбиоза стали пластидами эукариот. Можно полагать, что фотосинтез с выделением свободного кислорода возник первоначально вовсе не у зеленых растений, а у выделяющих его фотосинтезирующих бактерий и синезеленых водорослей.

Развитие биосферы Земли можно рассматривать как последовательную смену трех этапов (рис. 13). Первый этап - восстановительный - начался еще в космических условиях и завершился на Земле появлением гетеротрофной биосферы. Для первого этапа характерно появление малых сферических анаэробов (рис. 13, а). Присутствуют только следы свободного кислорода. Ранний способ фотосинтеза был, по существу, анаэробным. Развилась фиксация азота, поскольку часть ультрафиолетовой радиации проникала через атмосферу и быстро разлагала присутствующий аммиак.


Второй этап - слабоокислительный - отмечен появлением фотосинтеза. Он продолжался до завершения осад-конакопления полосчатых железистых формаций докем-брия. Аэробный фотосинтез начался предками цианобак-терий. Кислород производился организмами, строящими строматолиты (рис. 13, б). Но кислород мало накапливался в атмосфере, так как реагировал с железом, растворенным в воде. При этом окислы железа осаждались, образуя полосчатые железистые формации докембрия. Только когда океан освободился от железа и других поливалентных металлов, концентрация кислорода начала возрастать по направлению к современному уровню.





Третий этап характеризуется развитием окислительной фотоавтотрофной биосферы. Он начался с завершения отложений полосчатых железистых кварцитов около 1800 млн лет назад, в эпоху Карельско-Свекофенского орогенеза. Для этого этапа развития биосферы характерно наличие такого количества свободного кислорода, которого достаточно для появления и развития животных, потребляющих его при дыхании.

Последние два этапа в развитии биосферы фиксированы в каменной летописи геологической истории. Первый этап - наиболее далекий и загадочный, и расшифровка его истории связана с решением основных проблем органической космохимии.

Некоторые организмы раннего докембрия, относящиеся к синезеленым водорослям и пианобактериям, мало изменились в ходе геологической истории. Можно полагать, что простейшие организмы обладали наиболее устойчивой персистентностью (от латинского persiste - упорствую). По существу, в течение всей истории Земли не было причин для того, чтобы некоторые морские микроорганизмы, в частности синезеленые водоросли и бактерии, сильно изменились.



следующая страница >>